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Abstract. Partial evaluation has been never investigated in the context of rewrite
theories that allow concurrent systems to be specified by means of rules, with an
underlying equational theory being used to model system states as terms of an al-
gebraic data type. In this paper, we develop a symbolic, narrowing-driven partial
evaluation framework for rewrite theories that supports sorts, subsort overload-
ing, rules, equations, and algebraic axioms. Our partial evaluation scheme allows
a rewrite theory to be optimized by specializing the plugged equational theory
with respect to the rewrite rules that define the system dynamics. This can be par-
ticularly useful for automatically optimizing rewrite theories that contain overly
general equational theories which perform unnecessary computations involving
matching modulo axioms, because some of the axioms may be blown away after
the transformation. The specialization is done by using appropriate unfolding and
abstraction algorithms that achieve significant specialization while ensuring the
correctness and termination of the specialization. Our preliminary results demon-
strate that our transformation can speed up a number of benchmarks that are dif-
ficult to optimize otherwise.

1 Introduction

Rewriting Logic (RWL) is a logic of change that extends order-sorted equational logic
by adding rewrite rules that are used to describe non-deterministic transitions of con-
current systems. Rewriting Logic is efficiently implemented in the high-performance
system Maude [9]. Roughly speaking, a rewrite theory seamlessly combines a term
rewriting system (TRS), which specifies the system dynamics, with an equational the-
ory that defines the static structure of the system states. The equational theory may
contain equations and axioms (i.e., distinguished equations that specify algebraic laws
such as commutativity, associativity, and unity for some theory operators) so that rewrite
steps are performed modulo the equations and axioms.
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Partial evaluation (PE) is a program optimization technique (also known as program
specialization) that, given a program and some of its input data, produces a residual or
specialized program. Running the residual program on the remaining data is generally
faster and yields the same result as running the original program on all of its input
data [17]. PE has been widely applied to a variety of programs, including functional
programs (FP) [17] and logic programs (LP) [19], where it is usually called partial de-
duction (PD). The Equational Narrowing-driven Partial Evaluation (EQNPE) scheme
of [1] extends PD to the specialization of order-sorted equational theories with respect
to a set of input terms. The input equational theory (Σ,E ]B) consists of a set E of
convergent equations (that in the order-sorted setting means they are confluent and ter-
minating, among other requirements) that are implicitly oriented from left to right as
rewrite rules (and operationally used as simplification rules), and a set B of commonly
occurring axioms such associativity, commutativity, and identity that are essentially
used for pattern matching modulo axioms. Thanks to the use of (a form of) narrowing,
the symbolic mechanism that extends term rewriting by replacing pattern matching with
unification [29], the achieved transformation is strictly more powerful than the PE of
both logic programs and functional programs [4]

In the following we consider a rewrite theory R = (Σ,E ]B,R) that extends the
order-sorted equational theory E = (Σ,E ]B) with a set R of rewrite rules that spec-
ify concurrent system transitions. Rewrite theories can not only be executed by equa-
tional rewriting in Maude but also symbolically executed by narrowing at two levels:
(i) narrowing with the (typically non-confluent and non-terminating) rules of R modulo
(E ]B), and (ii) narrowing with oriented equations ~E (the explicitly oriented version
of the equations in E) modulo the axioms B. They both have practical applications:
(i) narrowing with R modulo (E ]B) is useful for solving reachability goals and logi-
cal model checking [26], and (ii) narrowing with ~E modulo B (or (~E,B)-narrowing) is
useful for equational unification and variant computation [14]. Both levels of narrow-
ing should meet some conditions: (i) narrowing with R modulo (E ]B) is performed
in a “topmost” way (i.e., the rules in R rewrite the global system state) and there must
be a finitary unification algorithm for (E ]B), and (ii) narrowing with ~E modulo B re-
quires that B is a theory with a finitary unification algorithm4 and that ~E is convergent.
When (Σ,E]B) additionally has the property that a finite complete set of most general
(~E,B)-variants5 exists for each term, known as the finite variant property (FVP), E -
unification is finitary and topmost narrowing with R modulo the equations and axioms
can be effectively performed.

For (~E,B)-variant computation and (variant-based) E -unification, the folding vari-
ant narrowing (FVN) strategy of [14] is used. The main idea of folding variant narrow-
ing is to “fold”6 , by subsumption modulo B, the (~E,B)-narrowing tree that can in prac-

4 This happens for B consisting of modular combinations of associativity, commutativity, and/or
identity axioms for different theory operators.

5 A variant of a term t consists of a pair (t ′,σ), where t ′ is the (~E,B)-irreducible form of tσ for
a substitution σ .

6 The notion of folding in folding variant narrowing is essentially a subsumption notion applied
to some leaves of the narrowing tree so that less general leaves are subsumed (folded into)
most general ones. Therefore, this notion is quite different from the classical folding operation



tice result in a finite, directed acyclic narrowing graph that symbolically and concisely
summarizes the (generally infinite) narrowing search space of the theory. Nevertheless,
finiteness of folding variant narrowing trees is only guaranteed for equational theories
that satisfy the finite variant property.

Because both reachability goals and logical model checking generally require the
whole search space of rewrite theories to be analyzed (i.e. all system states and tran-
sitions), the opportunities for optimizing rewrite theories by partial evaluation may
appear to be scarce. Actually, partial evaluation typically removes some computation
states by performing as much program computation as possible hence contracting the
search space because some transitions are removed. The key idea in this paper for the
specialization of a rewrite theory R is to partially evaluate the underlying equational
theory E with respect to the function calls in the rules of R in such a way that E gets
rid of any unneeded overgenerality. By this means, only the functional computations
in E are compressed by partial evaluation, while keeping the concurrent computations
with the rules of R. Depending on the properties of both, E and R, the right unfolding
and abstraction operators must be chosen to achieve the biggest optimization possible
while ensuring termination and total correctness of the transformation. Moreover, in
many cases we transform a rewrite theory whose operators obey structural, algebraic
axioms such as associativity, commutativity, and unity, into a much simpler rewrite the-
ory whose operators obey no axioms. This makes it possible to run such theories into
an independent rewriting infrastructure that does not support rewriting modulo axioms.
Furthermore, some costly analyses that may require significant (or even unaffordable)
resources, both in time and space, can be now effectively performed after the transfor-
mation. This includes the analysis of cryptographic communication protocols that are
currently handled by some ad-hoc combination of separate techniques and that can be
recast as distinct instances of our generic partial evaluation scheme. See [1] for extra
references on narrowing-driven partial evaluation.

After some brief preliminaries in Section 2, we sketch the specialization algorithm
for rewrite theories in Section 3, which works in two phases: partial evaluation and
compression refactoring. In Section 4.1, we provide a suitable unfolding operator deal-
ing with theories that do not meet the finite variant property. Then, we discuss some
preliminary experiments that show the optimization capability of our technique and we
conclude.

2 Preliminaries

Let us recall some key concepts of rewriting logic theories [20] and equational unifica-
tion [5]. We consider an order-sorted signature7 Σ=(Σ,S,≤) that consists of a poset
of sorts (S,≤) and an S∗ × S-indexed family of sets Σ = {Σs1...sn,s}(s1...sn,s)∈S∗×S

of Burstall and Darlington’s fold/unfold transformation scheme [7], where unfolding is essen-
tially the replacement of a call by its body, with appropriate substitutions, and folding is the
inverse transformation, i.e., the replacement of some piece of code by an equivalent function
call.

7 This abuse of language of using Σ for both the triplet and the ranked set of function symbols
is useful, and is in fact the notation we use later.



of function symbols. The poset (S,≤) of sorts for Σ is partitioned into equivalence
classes C1, . . . ,Cn (called connected components) by the equivalence relation (≤∪≥)+.
Throughout this paper, Σ is assumed to be preregular, so each term t has a least sort
under ≤, denoted ls(t) (see [16]). Σ is also assumed to be kind-complete [23], that is,
for each sort s ∈ S, its connected component in the poset (S,≤) has a top sort under ≤,
denoted [s] and called the connected component’s kind, and for each function symbol
f ∈ Σs1...sn,s, there is also an f ∈ Σ[s1]...[sn],[s]. An order-sorted signature can always
be extended to be kind-complete [23]. Maude automatically checks preregularity and
adds a new “kind” sort [s] at the top of the connected component of each sort s ∈ S
specified by the user and automatically lifts each operator to the kind level. For tech-
nical reasons, it is useful to assume that Σ has no ad-hoc overloading8. However, this
assumption entails no real loss of generality: any Σ can be transformed into a semanti-
cally equivalent signature with no ad-hoc overloading (by symbol renaming). Note that
avoiding ad-hoc overloading ensures that Σ is sensible, in the sense that for any two
typings f : s1 . . .sn −→ s and f : s′1 . . .s

′
n −→ s′ of a n-ary function symbol f , if si

and s′i are in the same connected component of (S,≤) for 1 ≤ i ≤ n, then s and s′ are
also in the same connected component; this provides the right notion of unambiguous
signature at the order-sorted level.

We assume an S-sorted family X = {Xs}s∈S of disjoint variable sets. TΣ,s(X )
and TΣ,s denote the sets of terms and ground terms of sort s, respectively. Note that s<
s′ (s is a subsort of s′) implies the set of terms of sort s are a subset of the set of terms of
sort s′, i.e., TΣ,s(X ) ⊆ T

Σ,s′(X ). We (ambiguously) write TΣ(X ) and TΣ for both
the corresponding term algebras and for the underlying sets of terms, i.e., TΣ(X ) =
∪s∈STΣ,s(X ) and TΣ = ∪s∈STΣ,s. Throughout this paper we assume that TΣ,s , /0
for every sort s because this affords a simpler deduction system. The set of variables
occurring in a term t is denoted by Var(t). A ground term is a term without variables.
In order to simplify the presentation, we often disregard sorts when no confusion can
arise.

A position p in a term t is represented by a sequence of natural numbers (Λ denotes
the empty sequence, i.e., the root position). The top symbol of t is denoted by root(t).
Positions are ordered by the prefix ordering: p≤ q, if ∃w such that p.w= q. Given a term
t, we let Pos(t) and PosΣ(t) respectively denote the set of positions and the set of non-
variable positions of t (i.e., positions where a variable does not occur). The expression
t|p denotes the subterm of t at position p, and t[u]p denotes the result of replacing the
subterm t|p by the term u at position p.

A substitution σ is a sorted mapping from a finite subset of X to TΣ(X ). Substi-
tutions are written as σ = {X1 7→ t1, . . . ,Xn 7→ tn} where the domain of σ is Dom(σ) =
{X1, . . . ,Xn} and the set of variables introduced by terms t1, . . . , tn is written Ran(σ).
The identity substitution is denoted id. Substitutions are homomorphically extended to
TΣ(X ). The application of a substitution σ to a term t is denoted by tσ . The restriction
of σ to a set of variables V ⊂X is denoted σ|V ; sometimes we write σ|t1,...,tn to denote

8 Given the overloaded operator f : s1 . . .sm −→ s0 and f : s′1 . . .s
′
n −→ s′0, subsort overloading

means that m = n and, for all i, 0≤ i≤ n, si and s′i belong to the same connected component.
Otherwise, the overloading of f is called ad-hoc.



σ|V where V = Var(t1)∪ ·· ·∪Var(tn). Composition of two substitutions is denoted by
σσ ′ so that t(σσ ′) = (tσ)σ ′.

A Σ-equation is an unoriented pair t = t ′, where t, t ′ ∈ TΣ,s(X ) for some sort
s ∈ S. Given Σ and a set E of Σ-equations, order-sorted equational logic induces a
congruence relation =E on TΣ(X ) (see [21]). An equational theory is a pair (Σ,E ),
with Σ an order-sorted signature and E a set of Σ-equations. We often omit Σ when no
confusion can arise.

A term t is more (or equally) general than t ′ modulo E , denoted by t ≤E t ′, if there
is a substitution γ such that t ′ =E tγ . A substitution θ is more (or equally) general than
σ modulo E , denoted by θ ≤E σ , if there is a substitution γ such that σ =E θγ , i.e., for
all x ∈X ,xσ =E xθγ . Also, θ ≤E σ [V ] iff there is a substitution γ such that, for all
x ∈V,xσ =E xθγ . We also define t 'E t ′ iff t ≤E t ′ and t ′ ≤E t; and similarly θ 'E σ .

An E -unifier for a Σ-equation t = t ′ is a substitution σ such that tσ =E t ′σ .
CSUE (t = t ′) denotes a complete set of unifiers for the equation t = t ′ modulo E so
that any E -unifier is an E -instance of one of them. An E -unification algorithm is com-
plete if for any equation t = t ′ it generates a complete set of E -unifiers. Note that this
set needs not be finite. A unification algorithm is said to be finitary if it always termi-
nates. Note that a complete and finitary E -unification algorithm may not exist even if a
complete and finite set of E -unifiers exists [5].

A rewrite theory is a triple R = (Σ,E ,R), where (Σ,E ) is the equational theory
modulo which we rewrite and R is a set of rewrite rules. Rules are of the form l ⇒ r
where terms l,r ∈ TΣ,s(X ) for some sort s and Var(r) ⊆ Var(l). The terms l and r
are respectively called the left-hand side (or lhs) and the right-hand side (or rhs) of the
rule. The set R of rules is required to be sort-decreasing, i.e., for each l⇒ r in R, and
for each well-sorted substitution σ , ls(lσ)≥ ls(rσ).

Let →⊆ A× A be a binary relation on a set A. We denote its transitive closure
by→+, and its reflexive and transitive closure by→∗. We define the one-step rewrite
relation on TΣ(X ) for the set of rules R as follows: t →R t ′ if there is a position
p∈ Pos(t), a rule l⇒ r in R, and a substitution σ such that t|p = lσ and t ′ = t[rσ ]p. The
relation→R/E for rewriting modulo E is defined as =E ◦ →R ◦ =E . A term t is called
R/E -irreducible iff there is no term u such that t →R/E u. A substitution σ is R/E -
irreducible if, for every x ∈X , xσ is R/E -irreducible. We say that the relation→R/E
is terminating if there is no infinite sequence t1→R/E t2→R/E · · · tn→R/E tn+1 · · · . We
say that the relation →R/E is confluent if whenever t →∗R/E t ′ and t →∗R/E t ′′, there
exists a term t ′′′ such that t ′ →∗R/E t ′′′ and t ′′ →∗R/E t ′′′. A rewrite theory (Σ,E ,R) is
convergent if R is sort-decreasing and the relation→R/E is confluent and terminating.
In a convergent order-sorted rewrite theory, for each term t ∈TΣ(X ), there is a unique
(up to E -equivalence) R/E -irreducible term t ′ that can be obtained by rewriting t to
R/E -irreducible or normal form, which is denoted by t→!

R/E t ′, or simply t↓R/E when
t ′ is not relevant. For each x ∈ Dom(σ), σ↓R/E is defined as (σ↓R/E )(x) = σ(x)↓R/E .
A substitution σ is R/E -irreducible (normalized) iff xσ is so for each x ∈Dom(σ). For
a set Q of terms, we denote by Q↓R/E the set of normal forms of the terms in Q.

Since E -congruence classes can be infinite, →R/E -reducibility is undecidable in
general. Therefore, R/E -rewriting is usually implemented [18] by R,E -rewriting. We
define the relation →R,E on TΣ(X ) by t →p,R,E t ′ (or simply t →R,E t ′) iff there is a



non-variable position p∈PosΣ(t), a rule l⇒ r in R, and a substitution σ such that t|p =E

lσ and t ′ = t[rσ ]p. To ensure completeness of R,E -rewriting w.r.t. R/E -rewriting, we
require strict coherence, ensuring that =E is a bisimulation for R,E -rewriting [24]: for
any Σ-terms u,u′,v if u=E u′ and u→R,E v, then there exists a term v′ such that u′→R,E
v′ and v =E v′. Note that, assuming E -matching is decidable, →R,E is decidable and
notions such as confluence, termination, irreducible term, and normalized substitution
are defined for→R,E straightforwardly [24]. It is worth noting that Maude automatically
provides strict E -coherence completion for rules and equations for any combination of
associativity and/or commutativity and/or identity axioms [27]. That is, the specified
rules and equations are automatically completed to be coherent with no need for user
intervention.

Besides the standard assumptions on R mentioned before, we consider the classical
restriction that the set R of rules is coherent w.r.t. E (intuitively, this ensures that a
rewrite step with R can always be postponed in favor of deterministically rewriting
with E ).

2.1 Modeling Concurrent Systems as Rewrite Theories

Rewrite theories provide a natural computation model for concurrent systems as shown
in the following example.

Example 1. Let us consider a rewrite theory R = (Σ,E ]B,R) that encodes a close
variant of the handshake network protocol of [22]. The theory models an environment
where several clients and servers coexist. The signature Σ includes several operators
and sorts that model protocol entities. Names of the sorts are self-explanatory: for ex-
ample, servers are typed with sort Serv, clients with sort Cli, and messages with sort
Message.

Messages are encoded as non-empty, associative, sequences s1 . . .sn where, for the
sake of simplicity, each si is a term of sort Symbol in the alphabet {a,b,c}. We assume
that Symbol < Message, hence any symbol is also a (one-symbol) message. Clients
are represented as 5-tuples of the form [C,S,Q,K,V] of sort Cli, where C is the client’s
name, S is the name of the server C wants to communicate with, Q is a message encod-
ing a client handshake request, K is a natural number (specified in Peano’s notation)
that determines an encryption/decryption key for messages, and V is a constant value
that models the server handshake status. Initially, the status is set to the empty value mt,
and it changes to success whenever the handshaking process succeeded. Servers are
simply modeled by means of pairs of the form [S,K] of sort Serv, where S is a server
name, and K is an encryption/decryption key. All network packets are represented as
pairs of the form Host <- CNT of sort Packet, where Host is a client or server re-
cipient, and CNT specifies the packet content. Specifically, CNT is a term {H,M}, with H

being the sender’s name and M being a message that represents either a client handshake
request or a server response. System states are formalized as multisets t1 &. . .& tm of
clients, servers, and network packets via the ACU operator & whose unity element is
the constant null. The protocol dynamics is specified by the following three rules that
implements a handshake protocol where clients and servers agree on a shared key K.

rl [req] : [C,S,Q,K,mt] => (S <- {C,enc(Q,K)}) & [C,S,Q,K,mt] .



rl [reply] : (S <- {C,M}) & [S,K] => (C <- {S,dec(M,K)}) & [S,K] .

rl [rec] : (C <- {S,Q}) & [C,S,Q,K,mt] => [C,S,Q,K,success] .

More specifically, the rule req allows a client C to start a handshake request with a
sever S by sending an encrypted message enc(Q,K) to S so that the message Q is
encrypted by using the client’s key K. The rule reply lets the server S consume a client
handshake request packet S <- {C,M} by first decrypting the incoming message M with
the server key and then sending a response packet back to C that includes the decrypted
request message. The rule rec successfully completes the handshake between C and S

whenever the server response packet C <- {S,Q} includes a message Q which is equal
to the initial client request message. In this case, the status of the client is changed from
mt to success. Note that the handshake succeeds when the client and server use the
same key K.

Encryption and decryption capabilities are implemented by two functions (namely,
enc(M,K) and dec(M,K)) that are specified by the equational theory E in R. The
equational theory E implements a Caesar cipher with key K, which is a simple sub-
stitution cipher where each symbol in the plaintext message is replaced by the symbol
K positions forward in the alphabet. The cipher is circular, i.e., it works modulo the
cardinality of the alphabet. For instance, enc(a b,s(0)) would deliver (b c), and
dec(a b,s(0)) would be the message (c a). The equational theory E includes the
equations9 in Figure 1. In the specification, the equational attribute variant is used to
identify the equations to be considered by the folding variant narrowing strategy.

2.2 Equational Theories as Rewrite Theories

Algebraic structures often involve axioms like associativity and/or commutativity of
function symbols, which cannot be handled by ordinary term rewriting but are instead
handled implicitly by working with congruence classes of terms [12]. This is why an
equational theory is often decomposed into a disjoint union E = E ]B, where B is a
set of algebraic axioms (which are implicitly expressed in Maude as attributes of their
corresponding operator using the assoc, comm, and id: keywords) that are used for B-
matching, and E consists of (possibly conditional) equations that are implicitly oriented
from left to right as a set ~E of rewrite rules (and operationally used as simplification
rules modulo B). By doing this, a (well-behaved) rewrite theory (Σ,B,~E) is defined,
with ~E = {t→ t ′ | t = t ′ ∈ E}, which satisfies all of the conditions that we need. This is
formalized by the notion of decomposition of the equational theory (Σ,E ) as follows.

Definition 1 (Decomposition [13]). Let (Σ,E ) be a order-sorted equational theory. We
call (Σ,B,~E) a decomposition of (Σ,E ) if E = E ]B and (Σ,B,~E) is an order-sorted
rewrite theory satisfying the following properties:

1. ~E is convergent

9 Due to the lack of space, we omitted the definition of the operators [_,_,_], _<_, _+_ that
respectively implements the usual if-then-else construct, the less-than relation and the (asso-
ciative and commutative) addition over natural numbers.



var M : Message .

var X K : Nat .

var S : Symbol .

eq toNat(a) = 0 [variant] .

eq toNat(b) = toNat(a) + s(0) [variant] .

eq toNat(c) = toNat(b) + s(0) [variant] .

eq toSym(0)= a [variant] .

eq toSym(s(0)) = b [variant] .

eq toSym(s(s(0))) = c [variant] .

eq len = s(s(s(0))) --- Alphabet cardinality

eq shift(X) = [ s(X) < len,s(X), 0 ] [variant] .

eq unshift(0) = s(s(0)) [variant] .

eq unshift(s(X)) = X [variant] .

eq e(X,0) = X [variant] .

eq e(X,s(Y)) = e(shift(X),Y) [variant] .

eq d(X,0) = X [variant] .

eq d(X,s(Y)) = d(unshift(X),Y) [variant] .

eq enc(S,K) = toSym(e(toNat(S),K)) [variant] .

eq enc(S M,K) = toSym(e(toNat(S),K)) enc(M,K) [variant] .

eq dec(S,K) = toSym(d(toNat(S),K))[variant] .

eq dec(S M,K) = toSym(d(toNat(S),K)) dec(M,K) [variant] .

Fig. 1. Equational theory E encoding the Caesar cipher.

2. B is regular, i.e., for each t = t ′ in B, we have Var(t) =Var(t ′), and linear, i.e., for
each t = t ′ in B, each variable occurs only once in t and in t ′.

3. B is sort-preserving, i.e., for each t = t ′ in B and substitution σ , we have tσ ∈
TΣ,s(X ) iff t ′σ ∈ TΣ,s(X ). Furthermore, for each equation t = t ′ in B, all vari-
ables in Var(t) and Var(t ′) have a common top sort.

4. B has a finitary and complete unification algorithm, which implies that B-matching
is decidable.

5. The rewrite rules in ~E are convergent, i.e., confluent, terminating, and strictly co-
herent modulo B, and sort-decreasing.

We often abuse notation and say that (Σ,B,~E) is a decomposition of an order-sorted
equational theory (Σ,E ) even if E , E ]B but E is instead the explicitly extended B-
coherent completion of a set E ′ such that E = E ′]B.

In the following, we often consider rewrite theories (Σ,B,R) that are a decomposi-
tion of an order-sorted equational theory so that R = ~E.

2.3 Narrowing in Rewriting Logic

Narrowing generalizes term rewriting by allowing free variables in terms (as in logic
programming) and by performing unification (at non-variable positions) instead of match-
ing in order to (non-deterministically) reduce the term. Function definition and evalu-
ation are thus embedded within a symbolic logical framework and features such as
existentially quantified variables, unification, and function inversion become available.



Definition 2 ((R,E)-narrowing [26]). Let R = (Σ,E,R) be an order-sorted rewrite
theory. The (R,E)-narrowing relation on TΣ(X ) is defined as t ;σ ,R,E t ′ (or just t ;σ

t ′) if there exist p ∈ PosΣ(t), a (renamed apart10) rule l⇒ r in R, and a E-unifier σ of
t|p and l such that t ′ = (t[r]p)σ . The narrowing step t ;σ ,R,E t ′ is also called a (R,E)-
narrowing step. A term t is (R,E)-narrowable if there exist σ and t ′ such that t ;σ ,R,E t ′.
Given the narrowing sequence α : (t0 ;θ1 t1 · · ·;θn tn), the computed substitution of
α is θ = (θ1 . . .θn)|Var(t0) and we may write t0 ;n

θ
tn.

Since (R,E)-narrowing has quite a large search space, suitable strategies are needed
to improve the efficiency of narrowing by getting rid of useless computations.

First, we define the notion of a narrowing strategy. Given a (R,E)-narrowing se-
quence α : (t0 ;θ1 t1 · · · ;θn tn), we denote by αi the narrowing sequence αi : (t0
;θ1 t1 · · ·;θi ti), which is a prefix of α . Given an order-sorted rewrite theory R, we
denote by NR(t) the (possibly infinite) set of all (R,E)-narrowing sequences stemming
from t.

Definition 3 (Narrowing Strategy). A narrowing strategy in RWL is a function of two
arguments: a rewrite theory R = (Σ,E,R) and a term t ∈ TΣ(X ), which we denote
by SR(t), such that SR(t) ⊆ NR(t). We require SR(t) to be prefix closed, i.e., for
each narrowing sequence α ∈SR(t) of length n, and each i ∈ {1, . . . ,n}, we also have
αi ∈SR(t).

Narrowing strategies have been investigated in [26, 30] that are complete under
suitable conditions (i.e., for every solution, a most general answer is computed).

Example 2. The equational theory for exclusive-or has a decomposition into ~E con-
sisting of the (implicitly oriented) equations (1)-(3) below, and B the associativity and
commutativity (AC) axioms for symbol ⊕:

X⊕0 = X (1) X⊕X = 0 (2) X⊕X⊕Y = Y (3)

Note that equations (1)-(2) are not strictly AC-coherent, but adding equation (3) is suf-
ficient to recover that property (see [31, 11]).

Given the term t = X⊕Y , the following (~E,B)-narrowing steps can be proved (vari-
ables X and Y of the equations (1)-(3) are respectively renamed as X ′ and Y ′ by applying
the renaming apart technique; also, only the bindings for the variables X and Y of the
input term are shown)

X⊕Y ;φ1 X ′ using φ1 = {X 7→ 0,Y 7→ X ′} and Equation (1)
X⊕Y ;φ2 X ′ using φ2 = {X 7→ X ′,Y 7→ 0} and Equation (1)
X⊕Y ;φ3 0 using φ3 = {X 7→ X ′,Y 7→ X ′} and Equation (2)
X⊕Y ;φ4 Y ′ using φ4 = {X 7→ Y ′⊕X ′,Y 7→ X ′} and Equation (3)
X⊕Y ;φ5 Y ′ using φ5 = {X 7→ X ′,Y 7→ Y ′⊕X ′} and Equation (3)
X⊕Y ;φ6 U⊕Y ′ using φ6 = {X 7→ X ′⊕U,Y 7→ X ′⊕Y ′} and Equation (3)

10 The renaming is chosen to ensure that every substitution is idempotent, i.e., σ satisfies
Dom(σ)∩Ran(σ) = /0 so that (tσ)σ = tσ .



In order to provide a finitary and complete unification algorithm for a decompo-
sition (Σ,B,~E), two narrowing strategies are defined in [14] (variant narrowing and
folding variant narrowing) that we summarize in the following sections after recalling
the notion of term variant [10].

2.4 Term Variants

Intuitively, the variants of a term t are the normal forms of every possible instance of
t. More precisely, the set of (~E,B)-variants of t contains all pairs (t ′,θ) where θ is a
substitution and t ′ is equal to the (~E,B)-irreducible form of tθ modulo B.

Definition 4 (Term Variant [10]). Given a term t and a decomposition (Σ,B,~E), we
say that (t ′,θ) is an (~E,B)-variant of t if t ′ =B (tθ)↓~E,B, where Dom(θ) ⊆ Var(t) and
Ran(θ)∩Var(t) = /0.

Example 3. Consider the following basic specification for the addition of natural num-
bers without axioms:

0+Y = Y

s(X)+Y = s(X +Y )

The set of variants for the term N+0 is infinite, since we have (0,{N 7→ 0}), (s(0),{N 7→
s(0)}), . . ., (sk(0),{N 7→ sk(0)}). Analogously, the variants of the term 0 + M are
(0,{M 7→ 0}), (s(0),{M 7→ s(0)}), . . ., (sk(0),{M 7→ sk(0)}).

In order to capture when a newly generated variant is subsumed by a previously
generated one, we introduce the notion of variant preordering with normalization.

Definition 5 (More General Variant [14]). Given a decomposition (Σ,B,~E) and two
term variants (t1,θ1),(t2,θ2) of a term t, we write (t1,θ1)≤~E,B (t2,θ2), meaning (t1,θ1)

is a most general variant of t than (t2,θ2), iff there is a substitution ρ such that t1ρ =B t2
and (θ1ρ)|Var(t) =B (θ2↓~E,B)|Var(t).

Example 4. The term N +M has an infinite set of most general variants in the the-
ory of Example 3, since we have (M,{N 7→ 0}), (s(M),{N 7→ s(0)}), . . ., (sk(M),
{N 7→ sk(0)}), but also (M′,{N 7→ 0,M 7→ (0+M′)}). However, note that the variant
(M′,{N 7→ 0,M 7→ (0+M′)}) is subsumed by (M,{N 7→ 0}) and is therefore discarded
from the set of most general variants. The set of most general variants of the term 0+M
is finite and is {(M, id)}.

Definition 6 (Complete set of Variants [14]). Given a decomposition (Σ,B,~E) and a
term t, we write [[t]]~E,B for a complete set of variants of t, i.e., for any variant (t2,θ2)

of t, there is a variant (t1,θ1) ∈ [[t]]~E,B such that (t1,θ1)≤~E,B (t2,θ2). An equational
theory has the finite variant property (FVP) (or it is called a finite variant theory) iff for
all t ∈TΣ(X ), [[t]]~E,B is a finite set.



The specification of natural numbers of Example 3 is not a finite variant theory, since
the term N+M has an infinite number of most general variants, as shown in Example 4.
The equational theory for exclusive-or of Example 2 is a finite variant theory as it is the
following theory for Boolean expressions.

Example 5. Consider the following theory (written in Maude11 syntax) that declares
the two Boolean constants true and false, with the special attributes assoc and comm
meaning that the infix operators “and” and “or” obey associativity and commutativity
axioms:

fmod BOOL is

sort Bool .

ops true false : -> Bool .

op not : Bool -> Bool .

ops _and_ _or_ : Bool Bool -> Bool [assoc comm] .

vars X Y : Bool .

eq not(true) = false [variant] .

eq not(false) = true [variant] .

eq X and true = X [variant] .

eq X and false = false [variant] .

eq X or true = true [variant] .

eq X or false = X [variant] .

endfm

There are five most general variants modulo AC for the term “X and Y”, which are:
(X and Y, id),(Y,{X 7→ true}),(X,{Y 7→ true}),(false,{X 7→ false}),(false,{Y 7→
false}). Similarly, only five most general variants exist for “X or Y”.

It is generally undecidable whether an equational theory has the FVP [6]; a simple
semi-decision procedure is given in [8, 25] that works well in practice, and a t more
sophisticated technique based on the dependency pair framework is given in [14]. The
procedure in [8] is implemented in [3] and works by computing the variants of all flat
terms f (X1, . . . ,Xn) for any n-ary operator f in the theory and pairwise-distinct variables
X1, . . . ,Xn (of the corresponding sort); the theory does have the FVP iff there is a finite
number of most general variants for every such term [8].

Unlike Peano’s definition of natural numbers, Presburger’s arithmetic is FVP.

Example 6. Consider the Maude functional modules of Figure 2 that define natural
numbers with addition and other operations in Presburger’s and Peano’s style, respec-
tively. Presburger’s theory is FVP while Peano’s theory is not FVP.

2.5 The variant narrowing strategy

Given a decomposition (Σ,B,~E), applying narrowing without any restriction can be
very wasteful due to two main sources: (i) for axioms B such as associativity-commutativity,

11 In Maude 3.0, only equations with the attribute variant are used for narrowing under the
folding variant narrowing strategy.



1 fmod NAT-PRES is

2 pr TRUTH-VALUE .

3 sort Nat .

4

5 op 0 : -> Nat [ ctor ] .

6 op 1 : -> Nat [ ctor ] .

7 op _+_ : Nat Nat -> Nat [ ctor assoc comm id: 0 ] .

8 op _-_ : Nat Nat -> Nat .

9 op _>=_ : Nat Nat -> Bool .

10 op _>_ : Nat Nat -> Bool .

11 eq n:Nat - n:Nat + m:Nat = 0 [ variant ] .

12 eq (n:Nat + m:Nat) - n:Nat = m:Nat [ variant ] .

13 eq n:Nat >= 1 + n:Nat + m:Nat = false [ variant ] .

14 eq (n:Nat + m:Nat) >= n:Nat = true [ variant ] .

15 eq n:Nat > n:Nat + m:Nat = false [ variant ] .

16 eq (1 + n:Nat + m:Nat) > n:Nat = true [ variant ] .

17 endfm

Fig. 2. Presburger’s style Equational specification for natural numbers.

1 fmod NAT-PEANO is

2 pr TRUTH-VALUE .

3 sort Nat .

4

5 op 0 : -> Nat [ctor] .

6 op s : Nat -> NzNat [ctor] .

7 op _<_ : Nat Nat -> Bool .

8 op _+_: Nat Nat -> Nat [assoc comm id: 0].

9

10 eq 0 < s(X:Nat) = true [variant] .

11 eq X:Nat < 0 = false [variant] .

12 eq s(X:Nat) < s(Y:Nat) = X < Y [variant] .

13 eq X:Nat + 0 = X:Nat [variant].

14 eq s(X:Nat) + Y:Nat = s(X:Nat + Y:Nat) .

15 endfm

Fig. 3. Peano’s style equational specification for natural numbers.

the number of B-unifiers of an equation can be quite large; and (ii) if we narrow a term
in all possible positions, the narrowing tree may grow in an explosive way. Let us first
motivate the variant narrowing strategy with two ideas. First, for computing variants in
a decomposition we are only interested in narrowing derivations that deliver normalized
substitutions and lead to normalized terms.



Example 7. Continuing with Example 2, due to the prolific AC-unification algorithm
there are some redundant narrowing steps with non-normalized substitutions, such as

X⊕Y ;φ7 Y ′ using φ7 = {X 7→ X ′⊕X ′,Y 7→ Y ′} and Equation (3)

Note that this narrowing step with substitution φ7 is not needed because the same effect
is achieved with the normalized substitution φ1. Also note that there are many infinite
narrowing sequences, such as the one repeating substitution φ6 again and again: X ⊕
Y ;φ6 Z1 ⊕ Z2 ;φ ′6

Z′1 ⊕ Z′2 ;φ ′′6
Z′′1 ⊕ Z′′2 ; · · · where φ ′6 = {Z1 7→ U ′ ⊕ Z′1,Z2 7→

U ′⊕Z′2} and φ ′′6 = {Z′1 7→U ′′⊕Z′′1 ,Z
′
2 7→U ′′⊕Z′′2}.

Our second idea is to give priority to most general narrowing steps, instead of deal-
ing with more instantiated ones, and to select one and only one narrowing step among
those having the same generality, following a don’t care approach.

These optimizations are formalized as follows. First, a relative generality preorder
is defined on narrowing steps.

Definition 7 (Preorder and Equivalence of Narrowing Steps [14]). Given a decom-
position (Σ,B,~E), consider two narrowing steps α1 : t ;

σ1,~E,B
s1 and α2 : t ;

σ2,~E,B
s2.

Let V =Var(t). We write α1 �B α2 if σ1 ≤B σ2[V ] and α1 ≺B α2 if σ1 <B σ2[V ] (i.e., σ1
is strictly most general than σ2 on V ). We write α1 'B α2 if σ1 'B σ2[V ], i.e. α1 �B α2
and α2 �B α1.

The relation α1 'B α2 between narrowing steps defines a set of equivalence classes
of narrowing steps. In what follows, we will be interested in choosing a unique repre-
sentative α ∈ [α]'B in each equivalence class of narrowing steps from t. Therefore, α

will always denote the chosen unique representative α ∈ [α]'B that is minimal w.r.t. the
order �B.

The relation �B provides an improvement on narrowing executions in two ways.
First, narrowing steps with most general computed substitutions will be selected in-
stead of narrowing steps with more specific computed substitutions. As a particular
case, when both a rewriting step and a narrowing step are available for (even different
positions of) the same term, the rewriting step will always be chosen. Second, the re-
lation 'B provides a further optimization, since just one narrowing (or rewriting) step
is chosen for each equivalence class, which further reduces the width of the narrowing
tree.

The described strategy is formalized by the notion of variant narrowing.

Definition 8 (Variant Narrowing [14]). Given a decomposition (Σ,B,~E) and a nar-
rowing step α : t ;

σ ,~E,B t ′, α is a variant narrowing step if it satisfies: (i) σ|Var(t) is

(~E,B)-irreducible and (ii) α is the chosen unique representative of its
'B-equivalence class.

Following the notation of [14], a variant narrowing step from t to t ′ in (Σ,B,~E)
with substitution σ is denoted as t ;

σ ,~E,B t ′.

Note that we easily extend the variant narrowing strategy to variants, i.e., (t,θ);
σ ,~E,B

(t ′,θ ′) iff t ;
σ ,~E,B t ′ and θ ′ = θσ .



2.6 The folding variant narrowing strategy

The variant narrowing strategy defined above has no memory of previous steps. The
folding narrowing strategy of [14] does consider previous steps to avoid the repeated
generation of useless or unnecessary computation steps. This is done by considering the
narrowing tree as a graph, where some leaves are connected to other nodes by implicit
“fold” arrows. When combined with the variant narrowing strategy, the folding variant
narrowing strategy is achieved that is complete for variant generation and terminates
when the input term has a finite set of most general variants.

Let us define the folding variant narrowing strategy by introducing a folding nar-
rowing relation on term variants. The following definition normalizes each computed
variant, which is not performed in the original definition of [14].

Definition 9 (Folding Variant Narrowing Strategy). Let R = (Σ,B,~E) be a decom-
position. Given a Σ-term t, the frontier from term variant I = (t, id) is defined as

Frontier(I)0 = {(t↓~E,B, id)},
Frontier(I)n+1 = {(y↓~E,B,(ρσ)↓~E,B) | (∃(z,ρ) ∈ Frontier(I)n : (z,ρ);

σ ,~E,B (y,ρσ))∧
(@k ≤ n,(w,τ) ∈ Frontier(I)k : (w,τ)≤~E,B (y,ρσ))},
n≥ 0

The folding variant narrowing strategy, denoted by VN	R , is defined as

VN	R(t) = {α | α : t ;k
σ ,~E,B t ′∧∃k ≥ 0 : (t ′,σ) ∈ Frontier((t, id))k}

Example 8. For the input term X⊕Y , non-normalized narrowing steps such as

(X⊕Y, id);φ7 (Y
′,φ7), using φ7 = {X 7→ X ′⊕X ′,Y 7→Y ′} and Equation (3)

are not in VN	R becaus a variant narrowing step in VN	R computes the normalized ver-
sion of the same substitution; e.g., the variant narrowing step (X⊕Y, id);φ1 (X

′,φ1) is
computed using φ1 = {X 7→ 0,Y 7→ X ′} and Equation (1), and (X ′,φ1) ≤~E,B (Y ′,φ7).
Furthermore, the sequence (X ⊕Y, id) ;φ6 (Z1 ⊕ Z2,φ6) ;φ ′6

(Z′1 ⊕ Z′2,φ6φ ′6) corre-
sponding to the two-step prefix of the infinite variant narrowing derivation of Example 7
is not in VN	R because (Z1⊕Z2,φ6)≤~E,B (Z′1⊕Z′2,φ6φ ′6).

For a decomposition (Σ,B,~E), completeness of folding variant narrowing w.r.t.
(~E,B)-normalized substitutions is proved in [14, Theorem 4].

3 Partial Evaluation of Rewrite Theories

In this section, we briefly present the specialization procedure NPERU that allows a
rewrite theory R = (Σ,E ]B,R) to be optimized by specializing the underlying equa-
tional theory E = (Σ,E]B) with respect to the (calls in the) rewrite rules of R. The pro-
cedure NPERU is parametric w.r.t. an unfolding operator U that is used to construct
finite narrowing derivations for a given expression. NPERU is based on a suitable ex-
tension of the equational, narrowing-driven partial evaluation algorithm for equational
theories EQNPEU of [1] shown below.



3.1 Partial Evaluation of Equational Theories

Given E = (Σ,E]B) and a set Q of calls (henceforth called specialized calls), the main
goal of EQNPEU is to derive a new equational theory E ′ that computes the same an-
swers (and values) for any input term that is a recursive instance (modulo axioms) of
a term in Q. The procedure follows the style of Gallagher’s partial deduction method
[15], with two distinct control levels: the local level, which is controlled by an unfold-
ing operator, and the global level, which is managed by an abstraction operator.
Unfolding. To partially evaluate E with respect to Q12, the EQNPEU algorithm starts
by constructing in E a finite, possibly partial (folding variant) narrowing tree for each
input term t of Q. This is done by using the unfolding operator U that determines when
and how to stop the narrowing computations.
Abstraction. In order to guarantee that all possible executions for t in the original
theory E are covered by the specialization, every (sub-)term in any leaf of the tree
is required to be equationally closed w.r.t. Q. The equational closedness extends the
classical PD closedness by recursing over the term structure (in order to handle nested
function calls) and by considering B-equivalence of terms.

Roughly speaking, consider a natural partition13 of the signature as Σ = D ]C ,
where the values computed by simplification (i.e., reduction to canonical form) with ~E
modulo B are constructor terms, whereas the function symbols f ∈ D are viewed as
defined functions that are evaluated away by simplification with ~E modulo B. A term u
is closed modulo B w.r.t. Q (we also say that u is Q-closed modulo B) iff either: (i) it
does not contain defined function symbols of D , or (ii) there exists a substitution θ and
a (possibly renamed) q ∈ Q such that u =B qθ , and the terms in θ are recursively Q-
closed. For instance, given a defined binary symbol • that does not obey any structural
axioms (in particular the commutativity), the term t = a • (Z • a) is closed w.r.t. Q =
{a•X ,Y •a} or {X •Y}, but it is not with Q being {a•X}; however, it would be closed
if • were commutative.

A set T of terms is closed modulo B (w.r.t. Q and Σ) if closedB(Q, t) holds for each
t in T . A set R of rules is closed modulo B (w.r.t. Q and Σ) if the set that can be formed
by taking the right-hand sides of all of the rules in R also is closed modulo B. We often
omit Σ when no confusion can arise.

Note that several iterations of i) and ii) may be needed because some of the leaves
in deployed narrowing trees might include calls, i.e., (sub-)terms, that are not Q-closed
modulo B. At each iteration, an abstraction operator is applied to properly add the un-
covered (sub-)terms to the set of already partially evaluated calls, yielding a new set of
12 For simplicity, we assume that Q is normalized w.r.t. the equational theory E . If this were not

the case, for each t ∈Q that is not in canonical form such that t ↓~E,B=C(ti), where C( ) is the
(possibly empty) constructor context of t ↓~E,B and ti are the maximal calls in t ↓~E,B, we would
replace t in Q with the normalized terms ti, and add a suitable “bridge” equation t = C(ti) to
the resulting specialization.

13 This distinction between constructor and defined symbols is more sophisticated than the
standard division in the TRSs literature since Rewriting Logic supports overloaded symbols
that can play both roles. Consider, e.g., the sort poset Zero One < Nat and the equation
s(s(X:Nat))=X:Nat; in this setting, s:Zero-> One is a constructor symbol, whereas s:Nat
-> Nat is a defined symbol.



terms which may need further evaluation. The process is iteratively repeated as far as
new terms are introduced yet ensuring that the set cannot grow infinitely. The abstrac-
tion operator guarantees that only finitely many expressions are evaluated, thus ensuring
global termination of the specialization.

Theory generation. The EQNPEU algorithm does not explicitly compute a partially
evaluated equational theory. It does so implicitly, by computing a (generally augmented)
set Q′ of partially evaluated terms that unambiguously determine the desired partially
evaluated equations E as the set of resultants tσ = t ′ associated with the derivations in
the narrowing tree from the root t ∈ Q′ to the leaf t with computed answer substitution
σ , such that the closedness condition modulo B w.r.t. Q′ is satisfied for all function calls
that appear in the right-hand sides of the equations in E ′.

In the following, we assume the existence of the function GENTHEORY(Q′,(Σ,E]
B)) that delivers the partially evaluated equational theory E ′ = (Σ′,E ′]B′) univocally
determined by Q′ and the original equational theory E = (Σ,E ]B).

3.2 The NPERU scheme for the Specialization of Rewrite Theories

We first provide some auxiliary notions that are useful to describe the generic NPERU

scheme. Roughly speaking, the specialization of the rewrite theory R = (Σ,E]B,R) is
achieved by partially evaluating the hosted equational theory E = (Σ,E ]B) w.r.t. the
rules of R, which is done by using the partial evaluation procedure EQNPEU of Section
3.1. By providing suitable unfolding and abstraction operators, different instances of the
specialization scheme can be defined. An unfolding operator that is able to deal with
theories that do not meet the finite variant property is introduced in Section 4.1.

Given Σ= D ]C , let DE be the set of the defined symbols of D that appear in the
set of equations E. Given a term t, a maximal function call in t is a subterm t|w of t, with
w ∈ Pos(t), such that (i) root(t|w) ∈ DE , and (ii) there does not exist w′ ∈ Pos(t), such
that w′ ≤ w and t|w′ ∈DE . Given a rewrite rule s⇒ t of R, by mcalls(s⇒ t) we denote
the set of all the maximal function calls that occur in s and t. Also, mcalls(R) is the set
of all maximal calls in the rules of R. The NPERU procedure is outlined in Algorithm
1.

Algorithm 1 Symbolic Specialization of Rewrite Theories NPERU(R)

Require:
A rewrite theory R = (Σ,E ]B,R), an unfolding operator U

1: function NPERU (R)
Phase 1. Partial Evaluation

2: R′←{(l ↓~E,B)⇒ (r↓~E,B) | l⇒ r ∈ R}
3: Q← mcalls(R′)
4: Q′← EQNPEU ((Σ,E ]B),Q)
5: E ′← GENTHEORY(Q′,(Σ,E ]B))

Phase 2. Compression
6: R′′← COMPRESS((Σ,E ]B,R′),E ′,Q′)
7: return R′′



Roughly speaking, given the rewrite theory R = (Σ,E ]B,R), the procedure con-
sists of two phases. Phase 1 applies the EQNPEU algorithm to specialize the equational
theory E = (Σ,E ]B) w.r.t. a set Q of specialized calls that consists of all of the max-
imal functions calls that appear in the (~E,B)-normalized version R′ of the rewrite rules
of R. We must normalize the rules in R before initializing Q with the maximal calls
in the rules because, for each t in Q, the FV -narrowing tree for t is not rooted with
t but with t↓~E,B, hence we would loose the connection between the partially evaluated
equational theory and the rules of R if the rules were not correspondingly normalized.

This phase produces the new set of specialized calls Q′ from which the partial evalu-
ation E ′=(Σ′,E ′]B′) of E w.r.t. Q is univocally derived by executing GENTHEORY(Q′,(Σ,E]
B)).

Phase 2 is performed by the COMPRESS post-processing, shown in Algorithm 2,
that takes as input the (~E,B)-normalized R′ rewrite theory R ′ = (Σ,E]B,R′), the com-
puted partial evaluation E ′ = (Σ′,E ′]B′), and the final set of specialized calls Q′ from
which E ′ derives. The algorithm computes a new, much more compact equational the-
ory E ′′ = (Σ′′,E ′′]B′′) where unused symbols and unnecessary repetition of variables
are removed, and equations of E ′ are simplified by renaming similar expressions w.r.t.
an independent renaming function ρ that is derived from set of specialized calls Q′.

Formally, for each t of sort s in Q′ with root(t) = f , ρ(t) = ft(xn : sn), where xn
are the distinct variables in t in the order of their first occurrence and ft : sn → s is
a new function symbol that does not occur in Σ or Q′ and is different from the root
symbol of any other ρ(t ′), with t ′ ∈ Q′ and t ′ , t. By abuse, we let ρ(T ) denote the set
T ′ = {ρ(t) | t ∈ T} for a given set of terms T .

Algorithm 2 Compression algorithm
Require:

A rewrite theory R′ = (Σ,E ]B,R′), a partial evaluation E ′ = (Σ′,E ′ ]B′) of (Σ,E ]B)
w.r.t. a set of specialized calls Q.

1: function COMPRESS(R,E ′,Q)
2: Let ρ be an independent renaming for Q in
3: E ′′←

⋃
t∈Q{ρ(t)θ = RNρ (t ′) | tθ = t ′ ∈ E ′}

4: R′′←{RNρ (l)⇒ RNρ (r) | l⇒ r ∈ R′}
5: Σ′′← (Σ′ \{ f | f occurs in ((E ]B)\ (E ′]B′))})∪{root(ρ(t)) | t ∈ Q}
6: B′′ = {ax( f ) ∈ B′ | f ∈ Σ′∩Σ′′}
7: return (Σ′′,E ′′]B′′,R′′)

where

RNρ (t) =


c(RNρ (tn)) if t = c(tn) with c : sn→ s ∈ Σ s.t. c ∈ C , ls(t) = s, n≥ 0

ρ(u)θ ′ if ∃θ ,∃u ∈ Q s.t. t =B uθ and θ ′ = {x 7→ RNρ (xθ) | x ∈ Dom(θ)}
t otherwise

Essentially, the COMPRESS algorithm of Figure 2 can be seen as a refactoring trans-
formation that recursively computes, by means of the function RNρ , a new equation set
E ′′ by replacing each call in E ′ by a call to the corresponding renamed function ac-
cording to ρ . Furthermore, a new rewrite rule set R′′ is also produced by consistently
applying RNρ to the rewrite rules of R′. Formally, each rewrite rule l⇒ r in R′ is trans-



formed into the rewrite rule RNρ(l)⇒ RNρ(r), in which every maximal function call
t in the rewrite rule is recursively renamed according to the independent renaming ρ .
The algorithm also computes the specialized signature Σ′′ and restricts the set B′ to
those axioms obeyed by the function symbols in Σ′ ∩Σ′′. Finally, the rewrite theory
R ′′ = (Σ′′,E ′′]B′′,R′′) is delivered as the final outcome.

Note that, while the independent renaming suffices to rename the left-hand sides of
the equations in E ′ (since they are mere instances of the specialized calls), the right-
hand sides are renamed by means of the auxiliary function RNρ , which recursively re-
places each call in the given expression by a call to the corresponding renamed function
(according to ρ).

Given the rewrite theory R = (Σ,E ] B,R) that satisfies all of the executability
conditions we required before, we can prove that they are also satisfied by the special-
ization.

Lemma 1 (preservation of executability conditions). Let R = (Σ,E ] B,R) be a
rewrite theory where: R is (ground) coherent with E modulo B; and 2) ~E = (Σ,B,~E) is
a decomposition. Let R ′ = NPERU

A(R) be a specialization of R under the renaming
ρ such that R ′ = (Σ′,E ′]B′,R′). Then,

1. R′ is (ground) coherent with E ′ modulo B′; and
2. ~E ′ = (Σ′,B′, ~E ′) is a decomposition.

The following result establishes the strong correctness of the NPERU
A specializa-

tion Algorithm 1, and it states that the specialized rewrite theory R ′ and the original
theory R are equivalent in the very strong sense that all computations in R are pre-
served in R ′.

Theorem 1 (strong correctness). Let R = (Σ,E ]B,R) be a topmost rewrite theory
where: 1) E = (Σ,E ]B) is a convergent theory; and 2) R is coherent with E modulo
B. Let Q′ = EQNPEU

A ((Σ,E ]B),Q), with Q = mcalls(R). Let R ′ = NPERU
A(R) be

a specialization of R under the renaming ρ so that E ′ = (Σ′,E ′]B′) is Q′-closed. Let
u ∈TΣ(X ) be Q′-closed and u′ = RNρ(u). Then,

1. (u→∗R/E,B v) if and only if (u′→∗R′/E ′,B′ v′), with v′ =B′ RNρ(v).

2. If R satisfies the FVP, then for any (~E,B)-normalized computed substitution σ ,
(u ;∗

σ ,R,E]B v) if and only if (u′;∗
σ ′,R′,E ′]B′ v′), with v′ =B′ RNρ(v) and σ ′(x) =B′

RNρ(σ(x)) for x ∈ Dom(σ).

Proof. The proof is immediate by the strong correctness of EQNPEU ((Σ,E ]B),Q)
(Theorem 6 in [1].)

4 Instantiating the Specialization Scheme for Rewrite Theories

In this section, we formulate an instance of the generic specialization scheme of Sec-
tion 3 by providing a concrete implementation Ufvp of the generic unfolding operator
U that implements the local control and is based on folding variant narrowing. Since



termination of folding variant narrowing is not generally guaranteed, the unfolding op-
erator Ufvp must incorporate some mechanism to stop the construction of the narrow-
ing trees. For this purpose, a number of standard techniques can be applied, including
depth-bounds, loop-checks, well-founded orderings, well-quasi orderings, etc.

4.1 Instantiating the Specialization Scheme for Rewrite Theories: The non-FVP
case

In this section, we assume a rewrite theory R = (Σ,E ]B,R) whose embedded equa-
tional theory E = (Σ,E ]B) does not satisfy the folding variant property.

Since E does not have the FVP, the FVN strategy may lead to the creation of an
infinite narrowing tree for some specialized calls in Q. In this case, an equational order-
sorted extension ĔB [1] of the classical homeomorphic embedding relation E can be
used to detect the risk of non-termination. Roughly speaking, a homeomorphic embed-
ding relation is a structural preorder under which a term t is greater than (i.e., it embeds)
another term t ′, written as t D t ′ , if t ′ can be obtained from t by deleting some parts;
e.g., s(s(X +Y ) ∗ (s(X)+Y )) embeds s(Y ∗ (X +Y ))). When iteratively computing a
sequence t1, t2, . . . , tn, finiteness of the sequence can be guaranteed by using the embed-
ding as a whistle: whenever a new expression tn+1 is to be added to the sequence, we
first check whether tn+1 embeds any of the expressions already in the sequence. If that
is the case, we say that E whistles, i.e., it has detected (potential) non-termination and
the computation has to be stopped. Otherwise, tn+1 can be safely added to the sequence
and the computation can proceed.

In our context, we say that a narrowing derivation D is admissible w.r.t. ĔB if and
only if it does not contain a pair of comparable narrowing redexes (i.e., rooted by the
same operation symbol) s and t, where s precedes t in D, such that sĔBt.

The embedding-based unfolding operator Ufvp for theories that do not satisfy the
FVP can hence be defined as follows.

Definition 10 (Unfolding operator Ufvp). Given the equational theory E = (Σ,E]B)
and a call t0 to be specialized in E , we define

Ufvp(t0,E ) = {tn | t0 ;n tn ∈ VN	~E (t0),
t0 ;n−1 tn−1 is admissible w.r.t. ĔB and
either @w : t0 ;n tn ; w ∈ VN	~E (t0)
or t0 ;n tn is not admissible w.r.t. ĔB.}

Given a set Q of specialized calls , we define Ufvp(Q,E ) =
⋃

t∈Q Ufvp(t,E ).

As for the global level of control, for theories that do not have the FVP (and also
for theories that have it), it is enforced by means of an abstraction operator that is based
on an equational order sorted extension of the least general generalization algorithm of
[2], and it guarantees that the number of unfolded narrowing trees is kept finite. Com-
puting a least general generalization (lgg) for two expressions t1 and t2, also known as
least general anti-unifier, means finding the least general expression t such that both t1
and t2 are instances of t under appropriate substitutions. Due to the algebraic axioms,



in general there can be more than one least general generalizer of two expressions. As
a simple example, we record the travel history of a person using a list (with associa-
tive list constructor symbol ‘.’) that is ordered by the chronology in which the visits
were made; e.g., paris.paris.bonn.nyc denotes that paris has been visited twice
before visiting bonn and then nyc. The travel histories paris.paris.bonn.nyc and
bonn.bonn.rome have two incomparable least general generalizers modulo axioms (a)
L1.bonn.L2 and (b) C.C.L, meaning that (a) the two travelers visited bonn, and (b)
they consecutively repeated a visit to their own first city. Note that the two generalizers
are least general and incomparable, since neither of them is an instance of the other
modulo axioms.

Example 9. Consider a specific instance of the rewrite theory of Example 1 where
servers and clients reach consensus on a pre-shared fixed key; for simplicity assume
K=s(s(0)). Let R = (Σ,E ]B,R) be such a rewrite theory, where E = (Σ,E ]B) is
the equational theory of R. In E , the FVN trees associated to encryption and decryption
capabilities may be infinite. For instance, the FVN tree for the call enc(M,s(s(0))
is infinite since the message M may have an arbitrary size. In fact, terms of the form
(t1 . . . tn enc(M

′,s(s(0)))) can be narrowed from enc(M,s(s(0)), where enc(M′,s(s(0)))
can be further narrowed to unravel an unlimited sequence of identical terms modulo re-
naming. Nonetheless homeomorphic embedding detects this non-terminating behaviour
since enc(M′,s(s(0)) embeds enc(M,s(s(0)).

By using the unfolding operator Ufvp, the first phase of the NPERU(R) Algorithm
1 computes the initial set Q= {enc(M,s(s(0)),dec(M,s(s(0))} consisting of the max-
imal functional calls in R. Then, the equational theory E is partially evaluated by
EQNPEUfvp w.r.t. Q. During the partial evaluation process, Ufvp only unravels finite
fragments of the FVN narrowing trees that are rooted by the specialized calls, thereby
yielding the partial evaluation E ′ of E in Figure 4.

The second phase of the algorithm produces the compressed equational theory E ′′

of Figure 5 by computing the following renaming for the theory functions. This greatly
simplifies E ′ since it gets rid of long sequences of nested calls and non-variable function
arguments.

dec(M : Message,s(s(0))) 7→ f0(M : Message)
enc(M : Message,s(s(0))) 7→ f1(M : Message)
toSym(unshift(unshift(toNat(X : Symbol)))) 7→ f3(X : Symbol)
toSym([[toNat(X : Symbol)< s(s(0)),s(toNat(X : Symbol)),0]< s(s(0)),

s([toNat(X : Symbol)< s(s(0)),s(toNat(X : Symbol)),0]),0]) 7→ f2(X : Symbol)

Finally, it is worth noting that the resulting specialization E ′′ provides a highly op-
timized version of E for an arbitrarily fixed key K=s(s(0)), where both functional
and structural compression are achieved. Specifically, data structures in E for natural
numbers and their associated operations for message encryption and decryption are to-
tally removed from E ′′. Note that the _+_, operator together with its associative and
commutative axioms, disappears from E ′′, thereby avoiding expensive matching oper-
ations modulo axioms. Encryption in E ′′ (resp., decryption) is now a direct mapping
f0 (resp., f1) that associates messages to their corresponding crypted (resp. decrypted)



eq dec(a,s(s(0))) = b [variant] .

eq dec(b,s(s(0))) = c [variant] .

eq dec(c,s(s(0))) = a [variant] .

eq dec(S:Symbol M:Message, s(s(0))) =

toSym(unshift(unshift(toNat(S:Symbol))))

dec(M:Message, s(s(0))) [variant] .

eq enc(a,s(s(0))) = c [variant] .

eq enc(b,s(s(0))) = a [variant] .

eq enc(c,s(s(0))) = b [variant] .

eq enc(S:Symbol M:Message, s(s(0))) =

toSym([[toNat(S:Symbol) < s(s(0)),s(toNat(S:Symbol)),0] < s(s(0)),

s([toNat(S:Symbol) < s(s(0)),s(toNat(S:Symbol)),0]),0]),

enc(M:Message, s(s(0))) [variant] .

eq toSym([[toNat(a) < s(s(0)),s(toNat(a)),0] <

s(s(0)),s([toNat(a) < s(s(0)),s(toNat(a)),0]),0]) = c [variant] .

eq toSym([[toNat(b) < s(s(0)),s(toNat(b)),0] <

s(s(0)),s([toNat(b) < s(s(0)),s(toNat(b)),0]),0]) = a [variant] .

eq toSym([[toNat(c) < s(s(0)),s(toNat(c)),0] <

s(s(0)),s([toNat(c) < s(s(0)),s(toNat(c)),0]),0]) = b [variant] .

eq toSym(unshift(unshift(toNat(a)))) = b [variant] .

eq toSym(unshift(unshift(toNat(b)))) = c [variant] .

eq toSym(unshift(unshift(toNat(c)))) = a [variant] .

Fig. 4. NPERUfvp Phase 1: Partial evaluation of E w.r.t. Q

counterparts, avoiding a huge amount of computation in the profuse domain of natural
numbers. Finally, the computed renaming is also applied to R by respectively replac-
ing the maximal function calls enc(M,s(s(0)) and dec(M,s(s(0)) with f0(M) and
f1(M) into the rewrite rules of R. This allows the (renamed) rewrite rules to be able to
access the new specialized encryption and decryption functionality provided by E ′′.

Note that our methodology may, in some cases, transform a rewrite theory whose
equational theory does not satisfy the FVP, into one that does. This allows narrowing-
based reachability problems to be solved in the specialized program, whereas it is not
possible into the original one. For instance, by restricting the handshake protocol to
messages of a fixed size (e.g. 3 symbols), we could get a specialization that meets the
FVP, in which the following reachability goal [Cli-A,Srv-A,Q,K,mt] & [Srv-A,K]

& (Srv-A <- {Cli-A,abc}) =>* [Srv-A,K]& [Cli-A,Srv-A,Q,K,success]

can be solved. The solution allows to infer the client key K=s(s(0)) and the non-
encrypted message Q=(bca) in the initial state whenever the crypted message abc is
sent to the server.

4.2 Instantiating the Specialization Scheme for Rewrite Theories: The FVP case

Let R = (Σ,E ] B,R) be a rewrite theory whose embedded equational theory E =
(Σ,E ]B) meets the folding variant property. In this scenario, folding variant narrow-
ing trees are always finite objects that can be effectively constructed in finite time.



eq f0(a) = b [variant] .

eq f0(b) = c [variant] .

eq f0(c) = a [variant] .

eq f2(a) = c [variant] .

eq f2(b) = a [variant] .

eq f2(c) = b [variant] .

eq f1(a) = c [variant] .

eq f1(b) = a [variant] .

eq f1(c) = b [variant] .

eq f3(a) = b [variant] .

eq f3(b) = c [variant] .

eq f3(c) = a [variant] .

eq f0(S:Symbol M:Message) = f3(S:Symbol) f0(M:Message) [variant] .

eq f1(S:Symbol M:Message) = f2(S:Symbol) f1(M:Message) [variant] .

Fig. 5. NPERUfvp Phase 2: Compression of E ′

Therefore, it is possible to define an unfolding operator that constructs the complete
narrowing tree for any possible specialized call in E . The unfolding operator Ufvp is
thus defined as follows.

Definition 11 (Unfolding operator Ufvp). Given the equational theory E = (Σ,E]B)
and a set Q of calls to be specialized in E , we define

Ufvp(Q,E ) =
⋃

t∈Q{t ′ | t ;! t ′ ∈ VN	E (t).}
where t ;! t ′ denotes a narrowing derivation from t to the unnarrowable term t ′.

The advantage of using Ufvp instead of Ufvp is twofold. First, Ufvp disregards the
embedding check of Definition 10, which may be extremely time-consuming when E
includes several operators that obey associative and commutative axioms14. Second,
Ufvp exhaustively explores the whole narrowing tree of a term, while Ufvp does not.
This may lead to a greater degree of specialization when Ufvp is applied.

5 Preliminary experimental evaluation

The NPERUfvp specialization algorithm has been implemented in a prototype system
that we have evaluated on a set of preliminary benchmark programs. Table 1 contains
the experiments that we have performed using an Intel Xeon E5-1660 3.3GHz CPU
with 64 GB RAM running Maude v3.0 and considering the average of ten executions
for each test. These experiments together with the source code of all examples are also
publicly available at [28].

14 This is due to the huge search space generated by AC operators when checking an embedding
relation. Indeed, given an AC operator ◦ and a term t = t1 ◦ t2 . . .◦ tn, all possible permutations
of t must be checked.



We have considered two variants of the handshake protocol previously discussed
in the paper for input messages of three different sizes: one hundred thousand sym-
bols, five hundred thousand symbols, and one million symbols (Column Msize). The
two variants differ in the introduction of an extra function (Fibonacci) in the underlying
equational theory to make the key generation heavier, and in this case, we introduce a
generous time bound to stop the execution after a substantial number of rewrites. We
have benchmarked the original rewrite theory R and the specialized rewrite theory R ′

on these data. We do not explicitly show the specialization times since they are negli-
gible for all problems (< 100 ms). For each benchmark, the number of rewrites for a
common initial state in each rewrite theory is shown in columns ˆRewsR and ˆRewsR′ ,
respectively. The percentage of reduction in terms of number of rewrites is shown in the
Reduction column.

The relative speedups that we achieved thanks to specialization are given in the
Speedup column and computed as the ratio TR/TR′ . Our figures are very encouraging
and show that the specialized theories achieve a significant improvement in execution
time when compared to the original rewrite theory, with an average speedup for these
benchmarks of 3.47.

Msize ˆRewsR ˆRewsR ′ Reduction TR (ms) TR ′ (ms) Speedup
Handshake Protocol 100K 2,600,115 400,002 84.62% 221 96 2.30

w/o Fibonacci 500K 13,000,205 2,000,002 84.62% 1,950 731 2.67
(success) 1M 26,000,100 4,000,002 84.62% 5,137 2,191 2.34

Handshake Protocol 100K 92,003,651 10,000,051 89.13% 10,200 1,716 5.94
with Fibonacci 500K 442,003,651 50,000,051 88.69% 53,424 12,185 4.38
(time bound) 1M 879,503,651 100,000,051 88.63% 129,112 40,857 3.16

Table 1. Experimental results for the specialization of the Handshake protocol
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