
Optimizing Maude Programs via Program Specialization ?

M. Alpuente1, D. Ballis2, S. Escobar1, J. Meseguer3, and J. Sapiña1

1 VRAIN, Universitat Politècnica de València, Valencia, Spain
{alpuente,sescobar,sapina}@upv.es

2 DMIF, Università degli Studi di Udine, Udine, Italy
demis.ballis@uniud.it

3 University of Illinois at Urbana-Champaign, Urbana, IL, USA
meseguer@illinois.edu

Abstract. We develop an automated specialization framework for rewrite theories that
model concurrent systems. A rewrite theory R = (Σ,E]B,R) consists of two main com-
ponents: an order-sorted equational theory E = (Σ,E]B) that defines the system states
as terms of an algebraic data type and a term rewriting system R that models the concur-
rent evolution of the system as state transitions. Our main idea is to partially evaluate the
underlying equational theory E to the specific calls required by the rewrite rules of R in
order to make the system computations more efficient. The specialization transformation
relies on folding variant narrowing, which is the symbolic operational engine of Maude’s
equational theories. We provide three instances of our specialization scheme that support
distinct classes of theories that are relevant for many applications. The effectiveness of our
method is finally demonstrated in some specialization examples.

1 Introduction

Maude is a high-performance, concurrent functional language that efficiently implements Rewrit-
ing Logic (RWL), a logic of change that unifies a wide variety of models of concurrency [38].
Maude is endowed with advanced symbolic reasoning capabilities that support a high-level, el-
egant, and efficient approach to programming and analyzing complex, highly nondeterministic
software systems [24]. Maude’s symbolic capabilities are based on equational unification and
narrowing, a mechanism that extends term rewriting by replacing pattern matching with unifi-
cation [49], and they provide advanced logic programming features such as unification modulo
user-definable equational theories and symbolic reachability analysis in rewrite theories. Intri-
cate computing problems may be effectively and naturally solved in Maude thanks to the synergy
of these recently developed symbolic capabilities and classical Maude features, such as: (i) rich
type structures with sorts (types), subsorts, and overloading; (ii) equational rewriting modulo
various combinations of axioms such as associativity (A), commutativity (C), and identity (U);
and (iii) classical reachability analysis in rewrite theories.

Partial evaluation (PE) is a program transformation technique that automatically specializes
a program to a part of its input that is known statically (at specialization time) [23, 33]. Partial
evaluation conciliates generality with efficiency by providing automatic program optimization.

? This work has been partially supported by the EC H2020-EU grant agreement No. 952215 (TAILOR),
the EU (FEDER) and the Spanish MCIU under grant RTI2018-094403-B-C32, by Generalitat Valen-
ciana under grant PROMETEO/2019/098, and by NRL under contract number N00173-17-1-G002. Ju-
lia Sapiña has been supported by the Generalitat Valenciana APOSTD/2019/127 grant.

In the context of logic programming, partial evaluation is often called partial deduction and
allows to not only instantiate input variables with constant values but also with terms that may
contain variables, thus providing extra capabilities for program specialization [35, 36]. Early
instances of this framework implemented partial evaluation algorithms for different narrowing
strategies, including lazy narrowing [12], innermost narrowing [15], and needed narrowing [2,
16].

The Narrowing-driven partial evaluation (NPE) scheme for functional logic program spe-
cialization defined in [15, 14] and implemented [1] in is strictly more powerful than the PE of
both logic programs and functional programs thanks to combining functional reduction with the
power of logic variables and unification by means of narrowing. In the Equational narrowing-
driven partial evaluation (EQNPE) scheme of [7], this enhanced specialization capability was
extended to the partial evaluation of order-sorted equational theories. Given a signature Σ of
program operators together with their type definition, an equational theory E = (Σ,E]B) com-
bines a set E of equations (that are implicitly oriented from left to right and operationally used
as simplification rules) on Σ and a set B of commonly occurring axioms (which are implicitly
expressed in Maude as operator attributes using the assoc, comm, and id: keywords) that are
essentially used for B-matching4. To be executable in Maude, the equational theory E is required
to be convergent (i.e., the equations E are confluent, terminating, sort-decreasing, and coherent
modulo B). This ensures that every input expression t has one (and only one) canonical form
t↓~E,B up to B-equality.

This paper addresses the specialization of rewrite theories R = (Σ,E]B,R) whose sys-
tem transitions are specified by rewrite rules R on top of an underlying equational theory E =
(Σ,E]B). Altogether, the rewrite theory R specifies a concurrent system that evolves by rewrit-
ing states using equational rewriting, i.e., rewriting with the rewrite rules in R modulo the equa-
tions and axioms in E [38]. In Maude, rewrite theories can also be symbolically executed by
narrowing at two levels: (i) narrowing with the (typically non-confluent and non-terminating)
rules of R modulo E = (Σ,E]B); and (ii) narrowing with the (explicitly) oriented equations
~E modulo the axioms B. They both have practical applications: (i) narrowing with R modulo
E = (Σ,E]B) is useful for solving reachability goals [43] and logical model checking [29];
and (ii) narrowing with ~E modulo B is useful for E -unification and variant computation [31].
Both levels of narrowing should meet some conditions: (i) narrowing with R modulo E is per-
formed in a “topmost” way (i.e., the rules in R rewrite the global system state) and there must be
a finitary equational unification algorithm for E ; and (ii) narrowing with ~E modulo B requires
that B is a theory with a finitary unification algorithm and that E is convergent. When (Σ,E]B)
additionally has the property that a finite complete set of most general variants5 exists for each
term, known as the finite variant property (FVP), E -unification is finitary and topmost narrowing
with R modulo the equations and axioms can be effectively performed.

For variant computation and (variant-based) E -unification, the folding variant narrowing (or
FV-narrowing) strategy of [31] is used in Maude, whose termination is guaranteed for theories
that satisfy the FVP (also known as finite variant theories). Another important class of rewrite
theories are those that satisfy the so-called constructor finite variant property (CFVP), i.e., they
have a finite number of most general constructor variants [40]. Many relevant theories have

4 For example, assuming a commutative binary operator ∗, the term s(0) ∗ 0 matches within the term
X ∗ s(Y) modulo the commutativity of symbol ∗ with matching substitution {X/0,Y/0}.

5 A variant [22] of a term t in the theory E is the canonical (i.e., irreducible) form of tσ in E for a given
substitution σ ; in symbols, it is represented as the pair (tσ↓~E,B,σ).

2

the FVP, including theories of interest for Boolean satisfiability and theories that give algebraic
axiomatizations of cryptographic functions used in communication protocols, where FVP and
CFVP are omnipresent. CFVP is implied by FVP together with sufficient completeness modulo
axioms (SC); that is, all function calls (i.e., input terms) reduce to values (i.e., ground constructor
terms [27, 32]).

Given the rewrite theory R = (Σ,E] B,R), the key idea of our method is to specialize
the underlying equational theory E = (Σ,E]B) to the precise use that the rules of R make
of the operators that are defined in E . This is done by partially evaluating E with respect to the
maximal (or outermost) function calls that can be retrieved from the rules of R, in such a way that
E gets rid of any possible over-generality and the functional computations given by E are thus
greatly compacted. Nevertheless, while the transformation highly contracts the system states,
we deliberately avoid making any states disappear since both reachability analysis and logical
model checking generally require the whole search space of rewrite theories to be searched (i.e.,
all system states).

Our specialization algorithm follows the classic control strategy of logic specializers [36],
with two separate components: 1) the local control (managed by an unfolding operator [13])
that avoids infinite evaluations and is responsible for the construction of the residual equations
for each specialized call; and 2) the global control (managed by an abstraction operator) that
avoids infinite iterations of the partial evaluation algorithm and decides which specialized func-
tions appear in the transformed theory. A post-processing compression transformation is finally
performed that highly compacts the functional computations occurring in the specialized rewrite
theory while keeping the system states as reduced as possible.

We provide three different implementations of the unfolding operator based on FV-narrowing
that may include some distinct extra control depending on the FVP/CFVP behavior of the equa-
tional theory E . More precisely, we distinguish the following three cases:

1. E does not fulfill the finite variant property: a subsumption check is performed at each FV-
narrowing step that compares the current term with all previous narrowing redexes in the
same derivation. The subsumption checking relies on the order-sorted equational homeo-
morphic embedding relation of [8] that ensures all infinite FV-narrowing computations are
safely stopped;

2. E satisfies the finite variant property: FV-narrowing trees are always finite for any input
term, and therefore they are completely deployed; and

3. E satisfies the finite variant property and is also sufficiently complete: we supplement un-
folding with an extra “sort downgrading” transformation in the style of [41] that safely rules
out variants that are not constructor terms. This means that all specialized calls get totally
evaluated and the maximum compression is achieved, thereby dramatically reducing the
search space for the construction of the specialized theories.

It is worth noting that our specialization system is based on the Maude’s narrowing en-
gine and, hence, it respects the limitations and applicability conditions of the current narrowing
implementation. In particular, Maude’s narrowing (and thus our specializer) does not support
conditional equations, built-in operators and special equational attributes (e.g., owise). How-
ever, advances in narrowing and unification for Maude will enlarge the class of rewrite theories
that our specialization technique handles.

Plan of the paper. In Section 2, we introduce a leading example that illustrates the optimization
of rewrite theories that we can achieve by using our specialization technique, which we formalize

3

in Section 3. In Section 4, we focus on finite variant theories that are sufficiently complete and
we demonstrate that both properties, SC and FVP, are preserved by our transformation scheme.
In Section 5, we instantiate the specialization scheme for the three classes of equational theories
already mentioned: theories whose terms may have an infinite number of most general variants,
or a finite number of most general variants, or a finite number of most general constructor vari-
ants. The proposed methodology is illustrated in Section 6 by describing several specializations
of the bank account specification of Section 2 and by presenting some experiments with the
partial evaluator Presto that implements our technique. In Section 7, we discuss some related
work and we conclude. The complete code of the specialized examples is given in the Appendix,
which is only meant to facilitate the review and is not a part of the paper.

2 A Leading Example

Let us motivate the power of our specialization scheme by optimizing a simple rewrite theory
that is inspired by [41]. The considered example has been engineered to fulfill the conditions for
the applicability of all the three instances of our specialization framework.

Example 1. Consider a rewrite theory that specifies a bank account system with managed ac-
counts. The system automates a simple investment model for the beginner investor that, when-
ever the account balance exceeds a given investment threshold, the excess balance is automat-
ically moved to investment funds. The system allows deposits and withdrawals to occur non-
deterministically, where each withdrawal occurs in two steps: the withdrawal is initiated through
a withdrawal request provided that the amount to be withdrawn is less than or equal to the cur-
rent account balance. Later on, the actual withdrawal is completed. On the contrary, deposits
are single-step operations that need to consume explicit deposit messages to be performed. This
asymmetric behaviour is due to the fact that the amount in a deposit operation is unbounded,
while a withdrawal request is always limited by the account balance. For simplicity, the external
operation of the investment portfolio is not considered in the model.

A managed account is modelled as a term

< bal: n pend: x overdraft: b threshold: h funds: f >

where n is the current balance, x is the amount of money that is currently pending to be
withdrawn, b is a Boolean flag that indicates whether or not the account is in the red, h is a
fixed upper threshold for the account balance, and funds represents the amount to be invested
by the account manager. Messages of the form d(m) and w(m) specify deposit and withdrawal
operations, where m is the amount of money to be, respectively, deposited and withdrawn. A
bank account state (or simply state) is a pair act # msgs, where act is an account and msgs a
multiset of messages. Monetary values in a state are specified by natural numbers in Presburger’s
style6. State transitions are formalized by the three rewrite rules in Figure 1 (namely, w-req, w,
and dep) that respectively implement withdrawal requests, (actual) withdrawals, and deposits.

The intended semantics of the three rules is as follows. The rule w-req non-deterministically
requests to draw money whenever the account balance covers the request. The requested amount
m is added to the amount of pending withdraw requests and the withdraw message w(m) is
generated. The rule w implements actual withdrawal of money from the account. When the

6 In [40], natural numbers are encoded by using two constants 0 and 1 and an ACU operator + so that a
natural number is either the constant 0 or a finite sequence 1 + 1 ... + 1.

4

rl [w-req] : < bal: n + m + x pend: x overdraft: false threshold: n + m + x + h funds: f > # msgs

=> < bal: n + m + x pend: x + m overdraft: false threshold: n + h funds: f > #

w(m) , msgs .

rl [w] : < bal: n pend: x overdraft: false threshold: n + h funds: f > # w(m),msgs

=> [m > n ,

< bal: n pend: x overdraft: true threshold: n + h funds: f > # msgs,

< bal: n - m pend: x - m overdraft: false threshold: n + h funds: f > # msgs] .

rl [dep] : < bal: n pend:x overdraft: false threshold: n + m + h funds: f > # d(m),msgs .

=> << bal: n + m pend: x overdraft: false threshold: n + m + h funds: f >> # msgs .

Fig. 1. Rewrite rules that model a simple bank account system.

balance is not enough, the account is blocked by setting overdraft to true and the withdrawal
attempt fails (for simplicity, the excess of balance that is moved to investment funds is never
moved back). If not in overdraft, money can be deposited in the account by processing the
deposit message d(m) using rule dep.

--- Encoding of natural numbers with constants 0,1 and ACU operator +

ops 0 1 : -> Nat [ctor] .

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

--- greater-than operator

op _>_ : Nat Nat -> Bool .

eq m + n + 1 > n = true [variant] .

eq n > n + m = false [variant] .

--- monus function

op _-_ : Nat Nat -> Nat .

eq n - (n + m) = 0 [variant] .

eq (n + m) - n = m [variant] .

--- if-then-else construct

op [_,_,_] : Bool State State -> State .

eq [true,s,s’] = s [variant] .

eq [false,s,s’] = s’ [variant] .

--- Account balance simplification

op << bal:_ pend:_ overdraft:_ threshold:_ funds:_ >> : Nat Nat Bool Nat Nat -> Account .

eq << bal: n + h pend: m overdraft: b threshold: h funds: f >>

= << bal: n pend: m overdraft: false threshold: h funds: f + 1 >> [variant] .

eq << bal: n pend: m overdraft: false threshold: n + h funds: f >>

= < bal: n pend: m overdraft: false threshold: n + h funds: f > [variant] .

Fig. 2. Companion equational theory for the bank account system.

The auxiliary functions that are used by the three rules implement the pre-agreed, auto-
mated investment policy for a given threshold. They update the account’s state by means of an
equational theory whose operators and equations are shown in Figure 2. The equational theory
extends Presburger’s arithmetic with the operators over natural numbers _>_ and _-_, together
with the if-then-construct [_,_, _] and an auxiliary version «...» of the operator <...> that en-
sures that the current balance n is below the current threshold h; otherwise, it sets the balance to

5

n mod h and increments the funds by n div h, where div is the division for natural numbers
and mod is the remainder of the division; both operations are encoded by successive subtractions.
Roughly speaking, this operator allows money to be moved from the bal attribute to the funds
attribute, whenever the balance exceeds the threshold h. Note that the amount of money in the
investment funds is measured in h units (1, 2, . . .), which indicate the client’s wealth category
(the higher the category, the greater the investment advantages). The attribute variant is used
to identify the equations to be considered by the FV-narrowing strategy.

The considered equational theory has neither the FVP nor the CFVP since, for instance, the
term « bal: n pend: x overdraft: false threshold: h funds: f » has an infinite
number of (incomparable) most general (constructor) variants

(< bal: n’ pend: x overdraft: false threshold: h funds: f + 1 >,{n/(n’ + h)})

...
(< bal: n’ pend: x overdraft: false threshold: h funds: f + 1 + ...+ 1 >,{n/(n’ + h +...+ h)})

eq f0($4,$5 + $4,$1 + $4,$6,$2,$3)

= < bal: $5 pend: $1 overdraft: false threshold: $5 + $4 + $6 funds: $2 > # $3 [variant] .

eq f0($5 + $3,$5 + $3 + $4,$5,$6,$1,$2)

= < bal: $4 pend: 0 overdraft: false threshold: $5 + $3 + $4 + $6 funds: $1 > # $2 [variant] .

eq f0(1 + $5 + $4,$5,$1,$6,$2,$3)

= < bal: $5 pend: $1 overdraft: true threshold: $5 + $6 funds: $2 > # $3 [variant] .

rl [w-req-s] : < bal: n + x + m pend: x overdraft: false threshold: n + h funds: f > # msgs

=> < bal: n + x + m pend: x + m overdraft: false threshold: n + h funds: f > # msgs,w(m) .

rl [w-s] : < bal: n pend: x overdraft: false threshold: n + h funds: f > # msgs,w(m)

=> f0(m,n,x,h,f,msgs) .

rl [dep-s] : < bal: n pend: x overdraft: false threshold: n + m + h funds: f > # msgs,d(m)

=> < bal: n + m pend: x overdraft: false threshold: n + m + h funds: f > # msgs .

Fig. 3. Specialized bank account system.

Nonetheless, this is not an obstacle to applying our specialization technique as it can naturally
handle theories that may not fulfill the FVP, whereas the total evaluation method of [41] can
only be applicable to theories that satisfy both, FVP and SC. Actually, in this specific case,
the application of our technique generates the highly optimized rewrite theory that is shown in
Figure 3, which improves several aspects of the input bank account theory. First, the specialized
equational theory is much more compact (3 equations vs 8 equations); indeed, all of the original
defined functions are replaced by a much simpler, newly introduced function f0 that is used
to update bank accounts. Furthermore, f0 exhibits an optimal performance since any call is
normalized in just one reduction step, thereby providing fast bank account updates. Actually, the
partially evaluated equational theory runs one order of magnitude faster than the original one, as
shown in Section 6. This happens because the right-hand sides of the equations defining f0 are
constructor terms; hence, they do not contain any additional function call that must be further
simplified.

Second, the specialized equational theory satisfies the FVP, which enables E -unification,
complete variant generation, and also symbolic reachability in the specialized bank account
system via narrowing with rules modulo E while they were not feasible in the original rewrite
theory.

6

Third, the original rewrite rules have also been simplified: the new deposit rule dep-s

gets rid of the operator «bal:_ pend:_ overdraft:_ threshold:_ funds:_ », while the
rewrite rule w-s replaces the complex nested call structure in the right-hand side of the rule w

with a much simpler and equivalent call to function f0.
A detailed account of the specialization process for this example is given in Section 6.

3 Specialization of Rewrite Theories

In this section, we briefly present the specialization procedure NPERU
A , which allows a rewrite

theory R = (Σ,E]B,R) to be optimized by specializing the underlying equational theory E =
(Σ,E]B) with respect to the calls in the rewrite rules R. The procedure NPERU

A extends the
equational, narrowing-driven partial evaluation algorithm EQNPEU

A of [7], which applies to
equational theories and is parametric on an unfolding operator U that is used to construct finite
narrowing trees for any given expression, and on an abstraction operator A that guarantees
global termination.

3.1 Narrowing and Folding Variant Narrowing in Maude

Equational, (R,E] B)-narrowing computations are natively supported by Maude version 3.0
for unconditional rewrite theories. Before explaining how narrowing computations are handled
within our framework, let us introduce some technical notions and notations that we need.

Let Σ be a signature that includes typed operators (also called function symbols) of the form
f : s1 . . .sm → s where si, and s are sorts in a poset (S,<) that models subsort relations (e.g.
s < s′ means that sort s is a subsort of s′). Σ is assumed to be preregular, so each term t has a
least sort under <, denoted ls(t). Binary operators in Σ may have an axiom declaration attached
that specifies any combinations of algebraic laws such as associativity (assoc), commutativity
(comm), and identity (id). By ax(f), we denote the set of algebraic axioms for the operator f .
By TΣ(X), we denote the usual non-ground term algebra built over Σ and the set of (typed)
variables X . By TΣ, we denote the ground term algebra over Σ. By notation x : s, we denote
a variable x with sort s. Any expression tn denotes a finite sequence t1 . . . tn, n ≥ 0, of terms. A
position w in a term t is represented by a sequence of natural numbers that addresses a subterm
of t (Λ denotes the empty sequence, i.e., the root position). Given a term t, we let Pos(t) denote
the set of positions of t. We denote the usual prefix preorder over positions by ≤. By t|w, we
denote the subterm of t at position w. By root(t), we denote the operator of t at position Λ.

A substitution σ is a sorted mapping from a finite subset of X to TΣ(X). Substitutions are
written as σ = {X1 7→ t1, . . . ,Xn 7→ tn}. The identity substitution is denoted by id. Substitutions
are homomorphically extended to TΣ(X). The application of a substitution σ to a term t is
denoted by tσ . The restriction of σ to a set of variables V ⊂X is denoted σ|V . Composition of
two substitutions is denoted by σσ ′ so that t(σσ ′) = (tσ)σ ′.

A Σ-equation (or simply equation, where Σ is clear from the context) is an unoriented pair
t = t ′, where t, t ′ ∈ TΣ,s(X) for some sort s ∈ S. An equational theory is a pair (Σ,E]B) that
consists of a signature Σ, a set E of Σ-equations, and a set B of equational axioms (e.g., asso-
ciativity, commutativity, and identity) declared for some binary operators in Σ. The equational
theory E induces a congruence relation =E on TΣ(X).

A term t is more (or equally) general than t ′ modulo E , denoted by t ≤E t ′, if there is a
substitution γ such that t ′ =E tγ . A substitution θ is more (or equally) general than σ modulo E ,

7

denoted by θ ≤E σ , if there is a substitution γ such that σ =E θγ , i.e., for all x∈X ,xσ =E xθγ .
Also, θ ≤E σ [V] iff there is a substitution γ such that, for all x ∈ V,xσ =E xθγ . An E -unifier
for a Σ-equation t = t ′ is a substitution σ such that tσ =E t ′σ .

Similarly to equational rewriting, where syntactic pattern-matching is replaced with match-
ing modulo E (or E -matching), in equational narrowing syntactic unification is replaced by
equational unification (or E -unification). More precisely, in a topmost7 rewrite theory R =
(Σ,E]B,R), with E = (Σ,E]B), equational narrowing is supported in Maude by means of a
three-layer machinery [21]:

1. An (R,E]B)-narrowing step from s to t with a rule l⇒ r in R can be performed iff there is
a E -unifier θ of the equation s = l such that t = rθ .

2. In turn, each E -unification problem s =?
E l of Point 1 is solved by using folding variant

narrowing in the equational theory E that computes a finite, minimal and complete set of
E -unifiers for s = l under suitable requirements [31]. Following [44], this is done by equa-
tionally narrowing the term s =?= l (that encodes the unification problem s =?

E l) to an
extra constant tt for denoting success in the rewrite theory R0 = (Σ∪{=?=, tt},B,~E∪{ε}),
where the extra8 rewrite rule ε = (X =?= X ⇒ tt) has been added to ~E in order to mimic
unification of two terms (modulo B) as a narrowing step9 that uses ε .

3. For each folding variant narrowing step using a rule in ~E modulo B in Point 2, B-unification
algorithms are employed, allowing any combination of symbols that satisfy any combination
of associativity, commutativity, and identity axioms [25].

Example 2. Consider the (partial) specification of integer numbers defined by the equations
E = {X+0= X,X+s(Y) = s(X+Y),p(s(X)) = X,s(p(X)) = X}, where variables X, Y are of sort
Int, operators p and s respectively stand for the predecessor and successor functions, and B
contains the commutativity axiom X+ Y = Y+ X. Also consider that the program signature Σ

contains a binary state constructor operator ||_,_ ||: Int Int → State for a new sort State
that models a simple network of processes that are either performing a common task (denoted
by the first component of the state) or have finished the task (denoted by the second component).
The system state t = ||s(0),s(0)+p(0) || can be rewritten to ||0,s(0) || (modulo the equations
of E and the commutativity of +) using the following rule that specifies the system dynamics:

||A,B ||⇒ ||p(A),s(B) ||, where A and B are variables of sort Int (1)

Also, a (topmost) narrowing reachability goal from || V+ V,0+ V || to || p(0),s(0) || suc-
ceeds (in one step) with computed substitution {V 7→ 0}, which is essentially calculated by first
computing an E -unifier σ of the input term || V+ V,0+ V || and the left-hand side || A,B || of
rule (1), σ = {A/(V+V),B/V}. Second, an E -unifier σ ′ is computed between the instantiated
right-hand side || p(V+ V),s(V) || and the target state || p(0),s(0) ||, σ ′ = {V 7→ 0}. Third, the
composition σσ ′ = {A 7→ 0+0,B 7→ 0,V 7→ 0} is simplified into {A 7→ 0,B 7→ 0,V 7→ 0} and fi-
nally restricted to the variable V in the input term, yielding {V 7→ 0}. Note that this narrowing

7 Besides the topmost assumption for R, we also consider the classical executability restriction that the
set R of rules is coherent with E modulo B (intuitively, this ensures that a rewrite step with R can always
be postponed in favor of deterministically rewriting with E modulo B).

8 In an order-sorted setting, multiple equations are actually used to cover any possible sort in R.
9 For example, by using ε , the term s(0) ∗ 0 =?= U ∗ s(V) FV-narrows to tt (modulo commutativity of
∗), and the computed narrowing substitution does coincide with the unifier modulo commutativity of the
two argument terms, i.e., {U 7→ 0,V 7→ 0}.

8

derivation might signal a possible programming error in rule (1) since the number of processes
in the first component of the state becomes negative.

The main idea of folding variant narrowing is to “fold” the search space of all FV-narrowing
computations by using subsumption modulo B. That is, folding variant narrowing avoids com-
puting any variant that is a substitution instance modulo B of a more general variant. Note that
this notion is quite different from the classical folding operation of Burstall and Darlington’s
fold/unfold transformation scheme [20], where unfolding is essentially the replacement of a call
by its body, with appropriate substitutions, and folding is the inverse transformation, i.e., the
replacement of some piece of code by an equivalent function call. In [31], folding variant nar-
rowing was proved to be complete and minimal for variant generation w.r.t. (~E,B)-normalized
substitutions and it terminates for all inputs provided that the theory has the FVP.

FV-narrowing derivations correspond to sequences t0 ;
σ0,~e0,B

t1 ;
σ1,~e1,B

. . .;
σn,~en−1,B

tn,
where t ;

σ ,~e,B t ′ (or simply t ;σ t ′ when no confusion can arise) denotes a transition (modulo
the axioms B) from term t to t ′ via the variant equation e (i.e., an oriented equation ~e that is
enabled to be used for FV-narrowing thanks to the attribute variant) using the equational uni-
fier σ . Assuming that the initial term t is normalized, each step t ;

σ ,~e,B t ′ (or variant narrowing
step) is followed by the simplification of the term into its normal form by using all equations in
the theory, which may include not only the variant equations in the theory but also (non-variant)
equations (e.g., built-in equations in Maude). The composition σ0σ1σn−1 of all the unifiers along
a narrowing sequence leading to tn (restricted to the variables of t0) is the computed substitution
of this sequence. The set of all FV-narrowing computations for a term t in E can be represented
as a tree-like structure, denoted by VN	E (t), that we call the FV-narrowing tree of t in E .

An equational theory has the finite variant property (FVP) (or it is called a finite variant
theory) iff there is a finite and complete set of most general variants for each term. Intuitively,
the (~E,B)-variants of t are the “irreducible patterns” (tσ)↓~E,B to which t can be narrowed, with

computed substitution σ , by applying the oriented equations ~E modulo B. For instance, there
is an infinite number of variants for the term (0 + Y:Int) in the equation theory of Exam-
ple 2; e.g., (Y:Int, id), (0,{Y:Int 7→ 0}),(s(0),{Y:Int 7→ s(0)}), (s(Z:Int),{Y:Int 7→
s(Z:Int)}), (p(0),{Y:Int 7→ p(0)}), . . .

A preorder relation of generalization between variants provides a notion of most general
variant and also a notion of completeness of a set of variants. Formally, a variant (t,σ) is more
general than a variant (t ′,σ ′) w.r.t. an equational theory E (in symbols, (t,σ) ≤E (t ′,σ ′)) iff
t ≤E t ′ and σ ≤E σ ′. For the term 0+Y:Int, the most general variant is (Y : Int, id) since any
other variant can be obtained by equational instantiation.

Example 3. Consider the definition of the (associative and commutative) Boolean conjunction
operator ∧ given by E = {X ∧ true = X, X ∧false = false}, where variable X belongs to
sort Bool and constants true and false stand for the corresponding Boolean values. There are
five most general variants modulo associativity and commutativity for the term X∧Y, which are:
{(X∧Y,id),(Y,{X 7→ true}),(X,{Y 7→ true}),(false,{X 7→ false}),(false,{Y 7→ false})}.

The theory of Example 3 satisfies the FVP, whereas the equational theory of Example 2
does not have the FVP since there is an infinite number of most general variants for the term
X : Int+Y : Int. It is generally undecidable whether an equational theory has the FVP [19]; a
semi-decision procedure is given in [39] (and implemented in [9]) that works well in practice
and another technique based on the dependency pair framework is given in [31]. The procedure

9

in [39] works by computing the variants of all flat terms f (X1, . . . ,Xn) for any n-ary operator f
in the theory and pairwise-distinct variables X1, . . . ,Xn (of the corresponding sort); the theory
does have the FVP iff there is a finite number of most general variants for every such term [39].

3.2 Partial Evaluation of Equational Theories

Given a convergent equational theory E = (Σ,E]B) and a set Q of terms (henceforth called
specialized calls), we define a transformation EQNPEU

A that derives a new equational theory
E ′ which computes the same answers (and values) as E for any input term t that is a recur-
sive instance (modulo B) of the specialized calls in Q. This means that all of the subterms of t
(including itself) are a substitution instance of some term in Q. The transformation EQNPEU

A
has two parameters, an unfolding operator U and an abstraction operator A , whose precise
meaning is clarified below.

The equational theory E to be specialized is decomposed as a simple rewrite theory ~E =
(Σ,B,~E) (henceforth ~E is called a decomposition of E), whose only equations are the equational
axioms in B and where the equations in E are explicitly oriented from left to right as the set ~E
of rewrite rules. The axioms B satisfy the following extra assumptions [30]: 1) regularity, i.e.,
for each t = t ′ in B, we have that the set of variables in t and t ′ is the same, 2) linearity, i.e., for
each t = t ′ in B, each variable occurs only once in t and in t ′; 3) sort-preservation, i.e., for each
t = t ′ in B and substitution σ , ls(tσ) = ls(t ′σ), and furthermore, all variables in t and t ′ have a
common top sort; and 4) B has a finitary and complete unification algorithm, which implies that
B-matching is decidable.

The transformation consists of iterating two consecutive actions:

i) Symbolic execution (Unfolding). A finite, possibly partial folding variant narrowing tree for
each input term t of Q10 is generated. This is done by using the unfolding operator U (Q, ~E)
that determines when and how to stop the derivations in the FV-narrowing tree.

ii) Search for regularities (Abstraction). In order to guarantee that all calls that may occur at
runtime are covered by the specialization, every (sub-)term in any leaf of the tree must be
equationally closed w.r.t. Q. This notion extends the classical PD closedness by:
1) considering B-equivalence of terms;
2) considering a natural partition of the signature as Σ = D]Ω, where Ω are the con-

stuctor symbols, which are used to define the (irreducible) values of the theory, and
D = Σ\Ω are the defined symbols, which are evaluated away by equational rewriting.

3) recursing over the term structure (in order to handle nested function calls). Roughly
speaking, a term u is equationally closed modulo B w.r.t. Q iff either: (i) it does not
contain defined function symbols of D , or (ii) there exists a substitution θ and a (possi-
bly renamed) q ∈ Q such that u =B qθ and the terms in θ are recursively Q-closed. For
instance, given a defined binary symbol • that does not obey any structural axioms, the
term t = a • (Z • a) is equationally closed w.r.t. Q = {a •X ,Y • a} or {X •Y}, but it is
not with Q being {a•X}; however, it would be closed if • were commutative.

10 For simplicity, we assume that Q is normalized w.r.t. the equational theory E . If this were not the case,
for each t ∈ Q that is not in canonical form such that t ↓~E,B=C(ti), where C() is the (possibly empty)
constructor context of t ↓~E,B and ti are the maximal calls in t ↓~E,B, we would replace t in Q with the
normalized terms ti and add a suitable “bridge” equation t =C(ti) to the resulting specialization.

10

Given the set L of leaves in the FV-narrowing trees for the partially evaluated calls in Q,
in order to properly add to Q the non-closed (sub-)terms occurring in the terms of L , an
abstraction operator A (Q,L ,B) is applied that yields a new set of terms which may need
further evaluation. The abstraction operator A (Q,L ,B) ensures that the resulting set of
terms “covers” (modulo B) the calls previously specialized and that equational closedness
modulo B is preserved throughout successive abstractions.

Steps i) and ii) are iterated as long as new terms are generated, and the abstraction operator A
guarantees that only finitely many expressions are evaluated, thus ensuring global termination.

Note that the algorithm does not explicitly compute a partially evaluated equational theory.
It does so implicitly, by computing a (generally augmented) set Q′ of partially evaluated terms
that unambiguously determine the desired partial evaluation of the equations in E as the set E ′

of resultants tσ = t ′ associated with the derivations in the narrowing tree from a root t ∈ Q′

to a leaf t ′ with computed substitution σ , such that the closedness condition modulo B w.r.t.
Q′ is satisfied for all function calls that appear in the right-hand sides of the equations in E ′.
We assume the existence of a function GENTHEORY(Q′,(Σ,E]B)) that delivers the partially
evaluated equational theory E ′ = (Σ′,E ′] B′) univocally determined by Q′ and the original
equational theory E = (Σ,E]B), with Σ′ = Σ and B′ = B.

3.3 The NPERU
A Scheme for the Specialization of Rewrite Theories

The specialization of the (topmost) rewrite theory R = (Σ,E]B,R) is achieved by partially
evaluating its underlying equational theory E = (Σ,E]B) w.r.t. the rules R, which is done by
using the partial evaluation procedure EQNPEU

A of Section 3.2. By providing suitable unfolding
(and abstraction) operators, different instances of the specialization scheme can be defined.

The NPERU
A procedure is outlined in Algorithm 1. Roughly speaking, the procedure con-

sists of two phases.

Phase 1) Partial Evaluation. It applies the EQNPEU
A algorithm to specialize the equational theory

E = (Σ,E]B) w.r.t. a set Q of specialized calls that consists of all of the maximal functions
calls that appear in the (~E,B)-normalized version R′ of the rewrite rules of R. We must
normalize the rules in R before initializing Q because, for each t in Q, the FV -narrowing
tree for t is not rooted by t but by t↓~E,B; hence, we would lose the connection between
the partially evaluated functions and the rules of R if the rules were not correspondingly
normalized.
Given Σ = (D]Ω), a maximal function call in a term t is any outermost subterm of t that
is rooted by a defined function symbol appearing in the equations of E. Given a rewrite rule
s⇒ t of R, by mcalls(s⇒ t), we denote the set of all the maximal function calls that occur
in s and t. By abuse, mcalls(R) is the set of all maximal calls in the rewrite rules of R.
This phase produces the new set of specialized calls Q′ from which the partial evaluation
E ′ = (Σ′,E ′]B′) of E w.r.t. Q is univocally derived by executing GENTHEORY(Q′,(Σ,E]
B)).

Phase 2) Compression. It consists of a refactoring transformation that computes a new, much more
compact equational theory E ′′ = (Σ′′,E ′′]B′′) where the equations of E ′ are simplified by
renaming similar expressions w.r.t. an independent renaming function ρ that is derived from
the set of specialized calls Q′ so that unused symbols, unneeded axioms, and unnecessary
repetition of variables are removed.

11

Algorithm 1 Symbolic Specialization of Rewrite Theories NPERU
A(R)

Require:
A rewrite theory R = (Σ,E]B,R), an unfolding operator U

1: function NPERU
A (R)

2: R′←{(l ↓~E,B)⇒ (r↓~E,B) | l⇒ r ∈ R}
3: Q← mcalls(R′)

Phase 1. Partial Evaluation
4: Q′← EQNPEU

A ((Σ,E]B),Q)
5: (Σ,E ′]B)← GENTHEORY(Q′,(Σ,E]B))

Phase 2. Compression
6: Let ρ be an independent renaming for Q in
7: Σ′′← (Σ\{ f | f occurs in E \E ′})∪{root(ρ(t)) | t ∈ Q}
8: B′′ = {ax(f) ∈ B | f ∈ Σ∩Σ′′}
9: E ′′←

⋃
t∈Q{ρ(t)θ = RNρ (t ′) | tθ = t ′ ∈ E ′}

10: R′′←{RNρ (l)⇒ RNρ (r) | l⇒ r ∈ R′}

where RNρ (t) =


c(RNρ (tn)) if t = c(tn) with c : sn→ s ∈ Σ s.t. c ∈Ω, ls(t) = s, n≥ 0

ρ(u)θ ′ if ∃θ ,∃u ∈ Q′ s.t. t =B uθ and θ ′ = {x 7→ RNρ (xθ) | x ∈ Dom(θ)}
t otherwise

11: return R′ = (Σ′′,E ′′]B′′,R′′)

More precisely, for each t of sort s in Q′such that its root symbol is f , we define ρ(t) =
ft(xn : sn), where xn are the distinct variables in t in the order of their first occurrence and
ft : sn → s is a new function symbol that does not occur in Σ or Q′ and is different from the
root symbol of any other renamed term ρ(t ′), for t ′ ∈ Q′.

Given the renaming ρ , the compression algorithm computes a new equation set E ′′ by re-
placing each call in E ′ by a call to the corresponding renamed function according to ρ . Note
that, while the independent renaming suffices to rename the left-hand sides of the equations in
E ′ (since they are mere instances of the specialized calls), the right-hand sides must be renamed
by recursively replacing each call in the given expression by a call to the corresponding renamed
function (according to ρ). This is done by means of the function RNρ .

Furthermore, a new rewrite rule set R′′ is also produced by consistently applying RNρ to the
(~E,B)-normalized rewrite rules of R′. Specifically, each rewrite rule l⇒ r in R′ is transformed
into the rewrite rule RNρ(l)⇒ RNρ(r), in which every maximal function call t in the rewrite
rule is recursively renamed according to the independent renaming ρ taking into account the
term equivalences given by B.

Given the rewrite theory R = (Σ,E]B,R) and its specialization R ′ = NPERU
A(R), all of

the executability conditions that are satisfied by R are also satisfied by R ′ = (Σ′,E ′]B′,R′),
including the fact that ~E ′ = (Σ′,B′, ~E ′) is a decomposition and that R′ is (ground) coherent
w.r.t. E ′ modulo B′. Also, because of the correctness and completeness of EQNPEU

A , which
states a strong correspondence between the variant computations of E and E ′ [7], the renam-
ing function ρ that is used to generate R ′ is a bisimulation between the transition systems
(TΣ/(E]B),→R/(E]B)) and (TΣ′/(E ′]B′),→R′/(E ′]B′)).

12

4 Total Evaluation and Constructor Variants

In [41], a theory transformation R 7→RΩ
l,r is defined that relies on the division of Σ as D]Ω

together with the notion of most general constructor variant that we describe in the following.
Roughly speaking, RΩ

l,r is obtained from R by transforming each rewrite l⇒ r in R into a totally
evaluated rule l′⇒ r′, where l′ and r′ are constructor Ω-terms. More precisely, any call appearing
in l (resp. r) to a function that is defined in E is replaced in l′ (resp. r′) by its constructor normal
form w.r.t. E .

4.1 Constructor Term Variants, Sufficient Completeness, and the CFVP

In order-sorted equational logic, the notion of constructor symbols and constructor terms are
more intricate and essential than in standard term rewriting. Let us denote by [t]B the B-equivalence
class of t, i.e., terms t ′ that are B-equivalent to t, in symbols t ′ =B t for all t ′ ∈ [t]B. Given a
decomposition (Σ,B,~E), quite often the signature Σ has a natural division as a disjoint union
Σ=D]Ω, where the elements of the canonical algebra C~E,B = {[t↓~E,B]B | t ∈TΣ} (that is, the
values computed by ~E,B-simplification) are Ω-terms, whereas the function symbols f ∈ D are
viewed as defined functions which are evaluated away by ~E,B-simplification. The subsignature
Ω (with same poset of sorts as Σ) is then called a constructor subsignature of Σ. We call a de-
composition (Σ,B,~E) sufficiently complete with respect to the constructor subsignature Ω iff for
each t ∈TΣ we have: (i) t↓~E,B∈TΩ; and (ii) if u ∈TΩ and u =B v, then v ∈TΩ. Condition (ii)
ensures that if any element in a B-equivalent class is a Ω-term, all other elements in the class are
also Ω-terms. We also say that (Σ,B,~E) is sufficiently complete w.r.t. Ω and input term t ∈ TΣ

if conditions (i) and (ii) hold for t. In the following, the ctor operator attribute of Maude is used
to highlight the constructor symbols of an equational theory so that the constructor subsignature
can be easily read off the Maude code.

A decomposition ~E = (Σ,B,~E) protects another decomposition ~E0 = (Σ0,B0,~E0) iff E0 ⊆
E , i.e., Σ0 ⊆ Σ, B0 ⊆ B, E0 ⊆ E, and for all t, t ′ ∈ TΣ0

(X) we have: (i) t =B0 t ′ ⇐⇒ t =B

t ′, (ii) t = t↓~E0,B0
⇐⇒ t = t↓~E,B, and (iii) C~E0,B0

= C~E,B|Σ0 , where C~E,B|Σ0 agrees with C~E,B
in the interpretation of all sorts and operations in Σ0 and discards everything in Σ \Σ0. The
decomposition ~EΩ = (Ω,BΩ, ~EΩ) is a constructor decomposition of ~E = (Σ,B,~E) iff 1) ~E

protects ~EΩ; and 2) ~E is sufficiently complete w.r.t. its constructor subsignature Ω.
Throughout the paper, we assume that the set B of axioms respects the constructors in any

decomposition ~E = (Σ,B,~E). In other words, if an axiom in B can be applied to a constructor
term, then the result is a constructor term.

Example 4. Consider the following Maude functional module that encodes an equational theory
E = (Σ,E]B) for natural numbers modulo 2, with an equation that collapses natural numbers
into the canonical forms 0 and s(0).

fmod OS-NAT/2 is

sorts Nat Zero One .

subsort Zero One < Nat .

op 0 : -> Zero [ctor] .

op s : Zero -> One [ctor] .

op s : Nat -> Nat .

eq s(s(0)) = 0 [variant] .

endfm

13

Let us denote by ~E = (Σ,B,~E) the decomposition of the considered theory. The signature Σ
can be naturally decomposed into D]Ω, where

D = {s : Nat→ Nat} and Ω= {0 :→ Zero,s : Zero→ One}.

Then, the decomposition (Ω, /0, /0) is a constructor decomposition of ~E .

Given Σ=D]Ω, it is possible to strengthen the notion of term variants to that of constructor
variants [40].

Definition 1 (Constructor Variant [40]). Let ~E =(Σ,B,~E) be a decomposition and let (Ω,BΩ,~EΩ)

be a constructor decomposition of ~E . Given a term t ∈ TΣ(X), we say that a variant (t ′,θ) of
t is a constructor variant if t ′ ∈TΩ(X) (i.e., the set of non-ground constructor terms).

The following example illustrates the notion of constructor variant in Maude.

Example 5. Consider the functional module OS-NAT/2 of Example 4 and the term s(X), with
X:Nat. There exist only two most general variants for s(X) in the equational theory E encoded
by OS-NAT/2: namely, (0,{X 7→ s(0)}) and (s(X),id). The former is also a constructor variant
since the constructor 0 belongs to the constructor subsignature Ω of E . Conversely, the latter
is not a constructor variant since s : Nat→ Nat in s(X) is a defined symbol. Nonetheless, note
that there exists the constructor variant (s(Y),X 7→ Y : Zero), where the sort of variable X:Nat

is downgraded to sort Zero, which is a constructor variant that is less general than (s(X),id).

The notion of most general variant can be trivially extended to constructor variants. By
[[t]]Ω~E,B, we denote the set of most general constructor variants for the term t. Given an equational
theory E = (Σ,E]B), we say that E = (Σ,E]B) has the constructor finite variant property
(CFVP) (or it is called a finite constructor variant theory) iff for all t ∈ TΣ(X), [[t]]Ω~E,B is a

finite set. By abuse, we often say that a decomposition (Σ,B,~E) has the FVP (resp. CFVP) when
E = (Σ,E]B) is a finite variant theory (resp. a constructor finite variant theory).

An algorithm for computing the complete set of most general constructor variants [[t]]Ω~E,B is

provided in [40] for a decomposition (Σ,B,~E) that satisfies the FVP, has a constructor decom-
position (Ω,EΩ,BΩ), and satisfies the extra preregular-below condition [40], which essentially
ensures that Σ does not contain any overloaded symbol with a constructor typing that lies below
a defined typing for the same symbol. Roughly speaking, the algorithm has two phases. First,
the signature Σ of (Σ,B,~E) is refined into a new signature Σc that introduces a new sort]s for
each sort s in the sort poset of Σ. Also, this sort refinement is extended to subsort relations,
and constructor operators to precisely identify the constructor terms of the decomposition. Two
functions, (_)• and its inverse (_)•, are respectively used to map sorts of Σ to sorts of Σc and
sorts of Σc to sorts of Σ. These functions are homomorphically extended to terms and substitu-
tions in the usual way. Then, [[t]]Ω~E,B is distilled from the set of most general variants [[t]]~E,B by
using unification modulo B in the following way:

[[t]]Ω~E,B = {(t ′τ•,(στ
•)|Var(t)) | (t ′,σ) ∈ [[t]]~E,B,τ ∈ CSUB(t

′ = x:(ls(t ′))•)}

where CSUB(t = t ′) denotes the complete set of unifiers of t = t ′ modulo B.

14

Example 6. Consider the FVP functional module OS-NAT/2 of Example 4. Its associated de-
composition has a constructor decomposition as shown in Example 4, and also meets the pre-
regular below condition. Indeed, although the successor operator in OS-NAT/2 is overloaded, its
constructor typing s : Zero→ One is below the defined typing s : Zero→ One, since Zero <

Nat and One < Nat. Hence, the algorithm in [40] can be used to compute [[t]]Ω~E,B.
The complete set of most general constructor variants for s(X:Nat)

[[s(X)]]Ω~E,B = {{(0,X 7→ s(0)),(s(X′),X 7→ X
′ : Zero)}

is derived from [[s(X)]]~E,B = {{(0,X 7→ s(0)),(s(X),id)} as follows.
The constructor variant (0,X 7→ s(0)) is a variant in [[s(X)]]~E,B and the (trivial) unification

problem 0= Y :]Zero provides a unifier τ• that leaves (0,X 7→ s(0)) unchanged.
The constructor variant (s(X′),X 7→ X′ : Zero) derives from the variant v = (s(X),id) ∈

[[s(X)]]~E,B by solving the unification problem s(X) = Y :]Nat which yields the computed unifier
τ = {X 7→ X′:]Zero,Y 7→ s(X′)}; hence, τ• = {X 7→ X′:Zero,Y 7→ s(X′)}, and finally by applying
τ• to v, we get (s(X′),{X 7→ X′:Zero}).

For any decomposition (Σ,B,~E), note that FVP implies CFVP when there exists a construc-
tor decomposition of (Σ,B,~E).

The following result establishes that the FVP and/or SC nature of an input equational theory
is preserved by the NPERU

A transformation.

Theorem 1 (FVP and SC preservation). Let R = (Σ,E]B,R) be a rewrite theory with E =

(Σ,E]B) such that ~E = (Σ,B,~E) is a decomposition. Let R ′ = NPERU
A(R) be a specialization

of R under the renaming ρ such that R ′ = (Σ′,E ′] B′,R′). Let Q = {t|s 7→ t ∈ ρ} so that
E ′ = (Σ′,E ′]B′) is Q-closed modulo B′. Then, it holds that

1. If ~E satisfies the FVP, then ~E ′ satisfies the FVP;
2. Given Σ = D]Ω, if ~E satisfies SC w.r.t. Ω, then ~E ′ satisfies SC w.r.t. Ω for every input

term that is Q-closed modulo B′.

4.2 Total Evaluation of Rewrite Theories

The total evaluation transformation R 7→RΩ
l,r is achieved by computing the set of most general

constructor variants [[〈l,r〉]]Ω~E,B, for each l ⇒ r in R. More specifically, R is transformed into

RΩ
l,r by replacing the set of rewrite rules of R with

RΩ
l,r = {l′→ r′ | l→ r ∈ R∧ (〈l′,r′〉,σ) ∈ [[〈l,r〉]]Ω~E,B}

Correctness of the transformation R 7→ RΩ
l,r (or more precisely, the isomorphism between the

ground canonical algebras of R and RΩ
l,r) is established in [41] and is ensured when the equa-

tional theory E =(Σ,E]B) in R satisfies the FVP, has a constructor decomposition (Ω,BΩ,EΩ),
and satisfies the preregular below condition.

Example 7. Consider a rewrite theory R that includes a single rewrite rule

rl [Y:Nat] => [s(Y:Nat)] .

15

and the finite variant equational theory E = (Σ∪{[_] : Nat→ State},E]B) that extends the
equational theory of Example 4 with the constructor operator [_] : Nat→ State. Note that
the decomposition ~E = (Σ∪{[_] : Nat→ State},B,~E) of E has a constructor decomposition
(Ω, /0, /0) where Σ = Ω]D with Ω = {[_] : Nat→ State,s : Zero→ One,0 :→ Zero} and
D = {s : Nat→ Nat}, and clearly satisfies the preregular below condition for the very same
argument exposed in Example 6. Hence, the transformation R 7→ RΩ

l,r can be applied to R
thereby specializing the original rule into the two following rewrite rules

rl [s(0)] => [0] .

rl [X:Zero] => [s(X:Zero)] .

which are obtained from the computation of [[〈[Y : Nat], [s(Y : Nat)]〉]]Ω~E,B.

In Section 5, we show how the R 7→RΩ
l,r transformation can be mimicked as an instance of

our NPERU
A scheme and we formulate two additional instances of the generic algorithm that

can deal with a rewrite theory that does not satisfy the FVP and/or SC. Furthermore, sometimes
we can transform a theory that satisfies SC but not FVP into a specialized theory that satisfies
both SC and FVP so that the above transformation can be applied.

5 Instantiating the Specialization Scheme for Rewrite Theories

Given a rewrite theory R = (Σ,E]B,R), with E = (Σ,B,~E) being a decomposition of (Σ,E]
B), the equational theory E in R may or may not meet sufficient completeness (SC) or the finite
variant property (FVP). In this section, we particularize the specialization scheme of Section 3
by considering the following three11 possible scenarios:

1. E meets SC and the FVP (hence, it has the CFVP);
2. E does not meet SC but it meets the FVP;
3. E does not meet the FVP.

Recall the parameterized NPERU
A algorithm of Section 3.3 relies on two generic operators:

an unfolding operator U that defines the unfolding rule used to determine when and how to
terminate the construction of the narrowing trees; and an abstraction operator A that is used
to guarantee that the set of terms obtained during partial evaluation (i.e., the set of deployed
narrowing trees) is kept finite and progressively covers (modulo B) all of the specialized calls.
The instantiation of the scheme requires particularizing these two parameters in order to specify
a terminating, correct and complete partial evaluation for E . In the following, we provide three
different implementations for the tandem U /A , and we show how they work in practice on
some use cases that cover all three scenarios.

5.1 Unfolding Operators

Let us first provide three possible implementations of the unfolding operator U that are respec-
tively able to deal with: (a) equational theories that satisfy the SC and FVP (hence, satisfy the
CFVP); (b) any equational theory that satisfies the FVP; and (c) equational theories that do not

11 The case when E satisfies SC but not the FVP is not considered because there is no technique to compute
the finite set of most general constructor variants in this case, which is a matter for future research.

16

satisfy the FVP. Since (Σ,B,~E) is a decomposition of (Σ,E]B), all the considered implementa-
tions adopt the folding variant narrowing strategy to build the narrowing trees which are needed
to specialize the input theory.

(a) Consider the case when E = (Σ,E]B) satisfies all of the conditions required for the cor-
rectness of the transformation R 7→ RΩ

l,r. In particular, E is SC and has the FVP. Let Σc

be the sort-refinement of the signature Σ presented in Section 4.1, where (_)• (resp., (_)•)
is the function that maps the sorts of Σ into the sorts of Σc (resp., the sorts of Σc into the
sorts of Σ). Then, we define the following unfolding operator that totally evaluates Q in the
decomposition ~E

Ucfvp(Q, ~E) =
⋃
t∈Q

{(x : s)σ• | t ;∗
σ ,~E,B x : (s•)∧ tσ , xσ ∧ s = ls(t)}

(b) When the equational theory E does not satisfy SC but does satisfy the FVP, FV-narrowing
trees are always finite objects that can be effectively constructed in finite time. Therefore, in
this specific case, we define the following unfolding operator that constructs the complete
FV-narrowing tree for any possible call.

Ufvp(Q, ~E) =
⋃
t∈Q

{t ′ | t ;!
σ ,~E,B

t ′ ∈ VN	~E (t)}

where t ;!
σ ,~E,B

t ′ denotes a FV-narrowing derivation from t to the term t ′ to which no FV-
narrowing steps can be applied.

(c) Finally, when E does not meet the finite variant property, U fvp(Q, ~E) cannot be applied
since the FVN strategy may lead to the creation of an infinite narrowing tree for some spe-
cialized calls in Q. In this case, the unfolding rule must implement a form of local control
that stops the expansion of infinite derivations in the FV-narrowing tree. A solution to this
problem has already been provided in [7] by means of an unfolding operator that com-
putes a finite (possibly partial) FV-narrowing tree fragment for every specialized call t in
Q. Narrowing derivations in the tree are stopped when no further FV-narrowing step can be
performed or potential non-termination is detected by applying a subsumption check at each
FV-narrowing step. The subsumption check is based on an equational order-sorted exten-
sion of the classical homeomorphic embedding relation [8] that is commonly used to ensure
termination of symbolic methods and program optimization techniques.
Roughly speaking, a homeomorphic embedding relation is a structural preorder under which
a term t is greater than (i.e., it embeds) another term t ′, written as t . t ′, if t ′ can be obtained
from t by deleting some parts, e.g., s(s(X +Y)∗(s(X)+Y)) embeds s(Y ∗(X +Y))). Embed-
ding relations have become very popular to ensure termination of symbolic transformations
because, provided the signature is finite, for every infinite sequence of terms t1, t2, . . . , there
exist i < j such that ti E t j. In other words, the embedding relation is a well-quasi order
(wqo) [34]. Therefore, when iteratively computing a sequence t1, t2, . . . , tn, finiteness of the
sequence can be guaranteed by using the embedding as a whistle: whenever a new expres-
sion tn+1 is to be added to the sequence, we first check whether tn+1 embeds any of the
expressions already in the sequence. If that is the case, we say that E whistles, i.e., it has
detected (potential) non-termination and the computation has to be stopped. Otherwise, tn+1
can be safely added to the sequence and the computation can proceed.
By Ufvp(Q, ~E), we denote this unfolding operator whose full formalization is given in [7].

17

5.2 Abstraction Operators

We consider two implementations of the abstraction operator: the first one deals with equational
theories that are sufficiently complete and satisfy the finite variant property, while the second
one covers the other two possible scenarios that we highlighted at the beginning of Section 5.

(a) When the equational theory E satisfies SC and has the FVP so that the unfolding operator
Ucfvp(Q, ~E) is applied, there is no need for an abstraction process. By construction of the
Ucfvp(Q, ~E) operator, the leaves of the tree are constructor terms; hence, they do not include
any uncovered function call that needs to be abstracted by a further iteration of the partial
evaluation process as constructor terms are trivially B-closed w.r.t. Q. Therefore, in this case,
we can simply define Acfvp(Q,L ,B) = Q, thus returning the very same set of specialized
calls Q.

(b) As for the remaining cases, there is no guarantee that the leaves of the narrowing trees are
B-closed w.r.t. the specialized calls in Q. Indeed, when the equational theory E does not
satisfy either sufficient completeness or the finite variant property, the operators U fvp(Q, ~E)

and U fvp(Q, ~E) might deliver uncovered function calls to be abstracted. To overcome this
problem, we simply resort to the abstraction procedure of [7], which relies on an equational
order sorted extension of the pure, syntactical least general generalization algorithm [10] so
that not too much precision is lost despite the abstraction.
Roughly speaking, the syntactic generalization problem for two or more expressions, in a
pure syntactic and untyped setting, means finding their least general generalization, i.e.,
the least general expression t such that all of the given expressions are instances of t under
appropriate substitutions. For instance, the expression sibling(X,Y) is a generalizer of both
sibling(john,sam) and sibling(tom,sam), but their least general generalizer is sibling(X,sam).
In [10], the notion of least general generalization is extended to the order-sorted modulo
axioms setting, where function symbols can obey any combination of associativity, commu-
tativity, and identity axioms (including the empty set of such axioms). For instance, the least
general generalizer of sibling(sam,john) and sibling(tom,sam) is still sibling(X,sam), when
sibling is a commutative symbol. In general, there is no unique lgg in the framework of [10],
due to both the order-sortedness and to the equational axioms. Nonetheless, for the case of
modular combinations of associativity and commutativity axioms, there is always a finite,
minimal, and complete set of equational lggs (E-lggs) so that any other generalizer has at
least one of them as a B-instance.

Therefore, in the case when the equational theory E does not satisfy either sufficient com-
pleteness or the finite variant property, we consider the abstraction operator AElgg(Q,L ,B),
which returns a set Q′ of specialized calls that abstracts the set Q∪L by using the general-
ization process formalized in [7] that ensures that Q′ is B-closed w.r.t. Q∪L .

The use of folding variant narrowing in the definition of the three unfolding operators Ufvp,
Ufvp, and Ucfvp, together with the abstraction operators Acfvp and AElgg, provides good overall
behavior regarding both the elimination of intermediate data structures and the propagation of
information.

18

6 Specializing the Bank Account System

In this section, we describe the precise specialization process that obtains the specialized bank
account system of Example 1. For convenience, we denote by Rb the rewrite theory that speci-
fies the bank account system. Rb includes the three rewrite rules of Figure 1 and the equational
theory Eb of Figure 2. The theory Eb also contains algebraic axioms associated with two oper-
ators: 1) the associative and commutative, constructor operator _+_ : Nat Nat -> Nat with
identity 0 (used to model natural numbers); and 2) the associative and commutative, constructor
operator _,_: MsgConf MsgConf -> MsgConf with identity mt (used to model multisets of
deposit and withdrawal messages). The whole Maude specification of the bank account system
is given in Appendix A.

As shown in Example 1, Eb is not a finite variant theory; therefore, the specialization of Rb
can only be performed by using the unfolding operator Ufvp despite the fact that it is sufficiently
complete. Indeed, the other two operators (namely, Ufvp and Ucfvp) are only applicable to equa-
tional theories that satisfy the finite variant property. In other words, the specialization of Rb is
achieved by using the NPERU

A scheme instance with U =Ufvp and A = AElgg.
The specialization algorithm starts Phase 1 by normalizing the rewrite rules of Rb (Line 2

of Algorithm 1) w.r.t. Eb. In this specific case, normalization only affects the dep rewrite rule,
while w-req and w rules are left unchanged. The normalized version of dep is

rl [dep-n] : < bal: n pend: x overdraft: false threshold: n + m + h funds: f > # msgs,d(m)

=> < bal: n + m pend: x overdraft: false threshold: n + m + h funds: f > # msgs .

Rule normalization allows a first optimization to be achieved since the dep rule is simplified into
dep-n by removing the operator « bal:_ pend:_ overdraft:_ threshold:_ funds:_

» from the right-hand side of the dep rule. At this point, all the maximal function calls are ex-
tracted from the normalized rules and stored in the set Q (Line 3 of Algorithm 1). Note that only
the right-hand side of the w rule contains calls to the underlying equational theory Eb. More pre-
cisely, the set Q of maximal function calls is Q = {rhs(w)}, where rhs(w) is the right-hand side
of w. The algorithm proceeds by partially evaluating Eb w.r.t.Q by an instance of the EQNPEU

A
scheme with Ufvp (in tandem with AElgg) (Line 4 of Algorithm 1) and Phase 1 terminates by
generating a rather complex and textually large specialized equational theory E ′b that contains
17 equations as shown in Appendix B. In Phase 2, the algorithm compresses the computed
equational theory E ′b into a more compact theory E ′′b that just contains four newly introduced
functions (namely, f1, f2, f3, f4) that rename common nested calls and remove unused sym-
bols. Furthermore, it propagates the computed renaming to the rewrite rules to let them access
the new functions of E ′′b . The resulting specialization R ′b for Rb is shown in Appendix C.

It is worth noting that the equational theory E ′′b in R ′b has the finite variant property. This
can be automatically proven by using the FVP checker in [9] on E ′′b , or by simply observing
that the functions f1,f2, f3, f4 are all defined by non-recursive equations and do not contain
nested function calls in their left-hand sides, which suffices to ensure the FVP for E ′′b [11].
Furthermore, the constructor decomposition of E ′′b has a signature which is trivially preregular
below the signature of E ′′b , since there are no overloaded operators with both a constructor typing
and a defined typing. Additionally, by Theorem 1 E ′′b is sufficiently complete.

Therefore, R ′b can be further specialized by applying the NPERU
A scheme instantiated with

U =Ucfvp and A = Acfvp. The final outcome is the optimized and extremely compact special-
ization R ′′b shown in Example 1 (Figure 3) that only includes three equations modeling the new
invented function f0.

19

As a final remark, R ′′b can be further optimized by a simple post-processing unfolding trans-
formation that achieves the very same total evaluation of [41]. It suffices to encode each rewrite
rule l⇒ r in R ′′b with a term l | r (where _ |_ is a fresh operator not appearing in the equational
theory) and solve the reachability goal l |r ;σ (x : ls(l)• |y : ls(r)•). The instantiated leaves l′ |r′
are constructor terms (x : s)σ• | (y : s)σ• that correspond to the totally evaluated rules l′⇒ r′.

For instance, the w-s rewrite rule in R ′′b can be totally evaluated by solving the reachability
goal with initial state

< bal: n pend: x overdraft: false threshold: n + h funds: f > # msgs,w(m) | f0(m,n,x,h,msgs)

that yields the specialized and totally evaluated withdrawal rules:
rl [w-s-1] : < bal: n + m + x pend: m overdraft: false threshold: n + m + x + h funds: f >

msgs, w(m + x)

=> < bal: n pend: 0 overdraft: false threshold: n + m + x + h funds: f > # msgs .

rl [w-s-2] : < bal: n + m pend: m + x overdraft: false threshold: n + m + h funds: f > # msgs, w(m)

=> < bal: n pend: x overdraft: false threshold: n + m + h funds: f > # msgs .

rl [w-s-3] : < bal: n pend: y overdraft: false threshold: n + h funds: f > # msgs, w(1 + n + x)

=> < bal: n pend: y overdraft: true threshold: n + h funds: f > # msgs .

The transformation leaves w-req-s and dep-s unchanged because these rules do not contain
any function call to be unfolded.

Our specialization framework has been implemented in the Presto system [46], which pro-
vides all the functionality previously described in this paper. Table 1 contains some experiments
that we have performed with an extension of the rewrite theory of Example 1 that is given by the
Maude module Fully-Managed-Account, where deposits are fully automated by increasing
balance accounts with a huge amount in a single step. Therefore there is no need to explicitly
provide deposit messages in the input terms. By doing so, we avoid to feed Presto with huge
input terms (with millions of deposits) whose parsing time might heavily affect the overall per-
formance of the specialization process, thereby providing a more precise and fair experimental
analysis.

Specifically, four distinct specializations of the rewrite theory under examination have been
computed. Since the original specification Fully-Managed-Account does not satisfy the FVP,
we first computed the specialized rewrite theory FMA-Specialized by using the tandem
Ufvp/AElgg. The obtained specialization does satisfy all of the conditions that are required to
be further specialized by using either the tandem Ufvp/AElgg or Ucfvp/Acfvp (in particular, it sat-
isfies SC and has the FVP); hence, we have also independently computed the two corresponding
(re-)specializations, FMA-Specialized-FVP and FMA-Specialized-CFVP. Also, we derived
the total evaluation FMA-Specialized-TE from FMA-Specialized-CFVP.

For each experiment, we recorded the execution time TR′ of each specialization for five
rewrite sequences with an increasing number of rewrite rule applications (from 100 thousands to
10 millions of applications). The considered sequences originate from the very same input term,
hence input processing impacts on each experiment in the same way. Then, we compared TR′

with the execution time TR in the original specification. These parameters allow us to precisely
measure the degree of equational optimization achieved by Presto for a given rewrite theory.
Indeed, the relative speedups for each specialization are computed as the ratio TR/TR′ . We also
measured the size of each specialization as the number of its rewrite rules and equations.

Our figures show an impressive performance improvement in all of the considered experi-
ments, with an average speedup of 20.52. In the worst case, we get a totally evaluated rewrite the-

20

Fully-Managed-Account FMA-Specialized FMA-Specialized-FVP FMA-Specialized-CFVP FMA-Specialized-TE

Size Rls/Eqs T (ms) Rls/Eqs T (ms) Speedup Rls/Eqs T (ms) Speedup Rls/Eqs T (ms) Speedup Rls/Eqs T (ms) Speedup
100K

3/14

1,398

3/17

65 21.51

3/3

63 22.19

3/3

63 22.19

5/0

96 14.56
500K 7,175 337 21.29 308 23.30 308 23.30 483 14.86
1M 14,472 680 21.28 602 24.04 599 24.16 998 14.50
5M 72,096 3,469 20.78 3,068 23.50 3,053 23.61 5,049 14.28
10M 141,919 6,805 20.86 6,149 23.08 6,127 23.16 10,162 13.97

Table 1. Benchmarks for the fully managed bank account system.

ory FMA-Specialized-TE that runs 13.97 times faster than the original system, while the high-
est speedup (24.16) is achieved by the (doubly specialized) theory FMA-Specialized-CFVP.
Interestingly, the totally evaluated specification FMA-Specialized-TE is the most compact one
(5 rules and 0 equations), nonetheless it provides the smallest, yet significant (∼14%), optimiza-
tion. This happens because all the equations have been removed from FMA-Specialized-TE so
that all of the equational computations are now embedded into system computations that are per-
formed by applying rewrite rules, which is notoriously less efficient in Maude than the determin-
istic rewriting with equations. We also note that, since FMA-Specialized satisfies both SC and
the FVP, for this particular benchmark the rewrite theories that are obtained by (re-)specializing
FMA-Specialized using U f vp and Uc f vp essentially achieve the same optimization.

Full details of these benchmarks together with further experiments are available at http:
//safe-tools.dsic.upv.es/presto.

7 Related work and Conclusion

In the related literature, there are very few semantic-preserving transformations for rewrite the-
ories. Since Maude is a reflective language, many tools are built in Maude that rely on theory
transformations that preserve specific properties such as invariants or termination behavior. Full-
Maude [21], Real-Time Maude [45], MTT [26], and Maude-NPA [28] are prominent examples.
Equational abstraction [42, 17] reduces an infinite state system to a finite quotient of the original
system algebra by introducing some extra equations that preserve certain temporal logic proper-
ties. Explicit coherence [50] between rules, equations and axioms is necessary for executability
purposes and also relies on rewrite theory transformations [41]. Also the semantic K-framework
[47] and the model transformations of [48] are based on sophisticated program transformations
that both preserve the reduction semantics of the original theory. Nonetheless they do not aim to
program optimization.

It is worth noting that our first transformation (for sufficiently complete, finite variant theo-
ries) must not be seen as a simple recast, in terms of partial evaluation, of the theory transfor-
mation of [41] since it has at least two extra advantages: 1) it seamlessly integrates the trans-
formation of [41] within a unified, automated specialization framework for rewrite theory opti-
mization; and 2) we have shown how we can automatically transform an equational theory that
does not satisfy the FVP into a CFVP theory that can then be totally evaluated, while the original
theory could not.

Our specialization technique can have a tremendous impact on the symbolic analysis of
concurrent systems that are modeled as rewrite theories in Maude. The main reason why our
technique is so effective in this area is that it not only achieves huge speedup for relevant classes
of rewrite theories, but it can also cut down an infinite folding variant narrowing space to a finite

21

one for the underlying equational theory E . By doing this, any E -unification problem can be
finitely solved and symbolic, narrowing-based analysis with R modulo E can be effectively per-
formed. Moreover, in many cases, the specialization process transforms a rewrite theory whose
operators obey algebraic axioms, such as associativity, commutativity, and unity, into a much
simpler rewrite theory with no structural axioms so that it can be run in an independent rewrit-
ing infrastructure that does not support rewriting or narrowing modulo axioms. This allows some
costly analyses that may require significant (or even unaffordable) resources, both in time and
space, to be effectively performed.

Finally, further applications could benefit from the optimization of variant generation that is
achieved by Presto. For instance, an important number of applications (and tools) are currently
based on narrowing-based variant generation: for example, the protocol analyzers Maude-NPA
[28], Tamarin [37], AKiSs [18], Maude debuggers and program analysers [5, 4, 6, 3], termi-
nation provers, model checkers, variant-based satisfiability checkers, coherence and confluence
provers, and different applications of symbolic reachability analysis [24].

22

Bibliography

[1] E. Albert, M. Alpuente, M. Falaschi, and G. Vidal. Indy User’s Manual. Technical Report
DSIC-II/12/98, Department of Computer Systems and Computation, Universitat Politèc-
nica de València, 1998.

[2] E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A Partial Evaluation Framework for
Curry Programs. In Proceedings of the 6th International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning (LPAR 1999), volume 1705 of Lecture
Notes in Computer Science, pages 376–395. Springer, 1999.

[3] M. Alpuente, D. Ballis, F. Frechina, and D. Romero. Backward Trace Slicing for Condi-
tional Rewrite Theories. In Proceedings of the 18th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR 2012), volume 7180 of Lecture
Notes in Computer Science, pages 62–76. Springer, 2012.

[4] M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. Assertion-based Analysis via Slicing
with ABETS (system description). Theory and Practice of Logic Programming, 16(5–
6):515–532, 2016.

[5] M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. Debugging Maude Programs via Run-
time Assertion Checking and Trace Slicing. Journal of Logical and Algebraic Methods in
Programming, 85:707–736, 2016.

[6] M. Alpuente, D. Ballis, and D. Romero. A Rewriting Logic Approach to the Formal Speci-
fication and Verification of Web Applications. Science of Computer Programming, 81:79–
107, 2014.

[7] M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. A Partial Evaluation Frame-
work for Order-Sorted Equational Programs modulo Axioms. Journal of Logical and Al-
gebraic Methods in Programming, 110:1–36, 2020.

[8] M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Order-sorted Homeomor-
phic Embedding modulo Combinations of Associativity and/or Commutativity Axioms.
Fundamenta Informaticae, 177(3-4):297–329, 2020.

[9] M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Sapiña. Inspecting Maude Variants
with GLINTS. Theory and Practice of Logic Programming, 17(5–6):689–707, 2017.

[10] M. Alpuente, S. Escobar, J. Espert, and J. Meseguer. A Modular Order-Sorted Equational
Generalization Algorithm. Information and Computation, 235:98–136, 2014.

[11] M. Alpuente, S. Escobar, and J. Iborra. Termination of Narrowing Revisited. Theoretical
Computer Science, 410(46):4608–4625, 2009.

[12] M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Specialization of Lazy Functional Logic
Programs. In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM 1997), pages 151–162. Association for
Computing Machinery, 1997.

[13] M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Safe Folding/Unfolding with Condi-
tional Narrowing. In Proceedings of the 6th International Joint Conference on Algebraic
and Logic Programming (ALP 1997), volume 1298 of Lecture Notes in Computer Science,
pages 1–15. Springer, 1997.

[14] M. Alpuente, M. Falaschi, and G. Vidal. A Unifying View of Functional and Logic Pro-
gram Specialization. ACM Computing Surveys, 30(3es):9es, 1998.

[15] M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic Programs.
ACM Transactions on Programming Languages and Systems, 20(4):768–844, 1998.

[16] M. Alpuente, S. Lucas, M. Hanus, and G. Vidal. Specialization of Functional Logic Pro-
grams based on Needed Narrowing. Theory and Practice of Logic Programming, 5(3):273–
303, 2005.

[17] K. Bae, S. Escobar, and J. Meseguer. Abstract Logical Model Checking of Infinite-State
Systems Using Narrowing. In Proceedings of the 24th International Conference on Rewrit-
ing Techniques and Applications (RTA 2013), volume 21 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 81–96. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2013.

[18] D. Baelde, S. Delaune, I. Gazeau, and S. Kremer. Symbolic Verification of Privacy-Type
Properties for Security Protocols with XOR. In Proceedings of the 30th International Sym-
posium on Computer Security Foundations (CSF 2017), pages 234–248. IEEE Computer
Society Press, 2017.

[19] C. Bouchard, K. A. Gero, C. Lynch, and P. Narendran. On Forward Closure and the Finite
Variant Property. In Proceedings of the 9th International Symposium on Frontiers of Com-
bining Systems (FroCos 2013), volume 8152 of Lecture Notes in Computer Science, pages
327–342. Springer, 2013.

[20] R. M. Burstall and J. Darlington. A Transformation System for Developing Recursive
Programs. Journal of the ACM, 24(1):44–67, 1977.

[21] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-Oliet, J. Meseguer, R. Rubio,
and C. Talcott. Maude Manual (Version 3.0). Technical report, SRI International Computer
Science Laboratory, 2020. Available at: http://maude.cs.uiuc.edu.

[22] H. Comon-Lundh and S. Delaune. The Finite Variant Property: How to Get Rid of Some
Algebraic Properties. In Proceedings of the 16th International Conference on Rewriting
Techniques and Applications (RTA 2005), volume 3467 of Lecture Notes in Computer Sci-
ence, pages 294–307. Springer, 2005.

[23] O. Danvy, R. Glück, and P. Thiemann, editors. Partial Evaluation, International Seminar,
Dagstuhl Castle, Germany, volume 1110 of Lecture Notes in Computer Science. Springer,
1996.

[24] F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, R. Rubio, and C. Talcott. Pro-
gramming and Symbolic Computation in Maude. Journal of Logical and Algebraic Meth-
ods in Programming, 110, 2020.

[25] F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, and C. Talcott. Associative
Unification and Symbolic Reasoning Modulo Associativity in Maude. In Proceedings of
the 12th International Workshop on Rewriting Logic and its Applications (WRLA 2018),
volume 11152 of Lecture Notes in Computer Science, pages 98–114. Springer, 2018.

[26] F. Durán, S. Lucas, and J. Meseguer. MTT: The Maude Termination Tool (System De-
scription). In Proceedings of the 4th International Joint Conference on Automated Rea-
soning (IJCAR 2008), volume 5195 of Lecture Notes in Computer Science, pages 313–319.
Springer, 2008.

[27] F. Durán, J. Meseguer, and C. Rocha. Ground Confluence of Order-Sorted Conditional
Specifications Modulo Axioms. Journal of Logical and Algebraic Methods in Program-
ming, 111:100513, 2020.

[28] S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Cryptographic Protocol Analysis
Modulo Equational Properties. In Foundations of Security Analysis and Design V (FOSAD
2007/2008/2009 Tutorial Lectures), volume 5705 of Lecture Notes in Computer Science,
pages 1–50. Springer, 2009.

[29] S. Escobar and J. Meseguer. Symbolic Model Checking of Infinite-State Systems Using
Narrowing. In Proceedings of the 18th International Conference on Term Rewriting and

24

Applications (RTA 2007), volume 4533 of Lecture Notes in Computer Science, pages 153–
168. Springer, 2007.

[30] S. Escobar, J. Meseguer, and R. Sasse. Variant Narrowing and Equational Unification.
Electronic Notes in Theoretical Computer Science, 238(3):103–119, 2009.

[31] S. Escobar, R. Sasse, and J. Meseguer. Folding Variant Narrowing and Optimal Variant
Termination. The Journal of Logic and Algebraic Programming, 81(7–8):898–928, 2012.

[32] I. Gnaedig and H. Kirchner. Computing Constructor Forms with Non Terminating Rewrite
Programs. In Proceedings of the 8th ACM SIGPLAN Conference on Principles and Prac-
tice of Declarative Programming (PPDP 2006), pages 121–132. Association for Comput-
ing Machinery, 2006.

[33] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993.

[34] M. Leuschel. Improving Homeomorphic Embedding for Online Termination. In Proceed-
ings of the 8th International Workshop on Logic Programming Synthesis and Transforma-
tion (LOPSTR 1998), volume 1559 of Lecture Notes in Computer Science, pages 199–218.
Springer, 1998.

[35] J. W. Lloyd and J. C. Shepherdson. Partial Evaluation in Logic Programming. The Journal
of Logic Programming, 11(3-4):217–242, 1991.

[36] B. Martens and J. Gallagher. Ensuring Global Termination of Partial Deduction while
Allowing Flexible Polyvariance. In Proceedings of the 12th International Conference on
Logic Programming (ICLP 1995), pages 597–611. The MIT Press, 1995.

[37] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The TAMARIN Prover for the Sym-
bolic Analysis of Security Protocols. In Proceedings of the 25th International Conference
on Computer Aided Verification (CAV 2013), volume 8044 of Lecture Notes in Computer
Science, pages 696–701. Springer, 2013.

[38] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical
Computer Science, 96(1):73–155, 1992.

[39] J. Meseguer. Variant-Based Satisfiability in Initial Algebras. In Proceedings of the 4th
International Workshop for Safety-Critical Systems (FTSCS 2015), volume 596 of Com-
munications in Computer and Information Science, pages 3–34. Springer, 2015.

[40] J. Meseguer. Variant-based Satisfiability in Initial Algebras. Science of Computer Pro-
gramming, 154:3–41, 2018.

[41] J. Meseguer. Generalized Rewrite Theories, Coherence Completion, and Symbolic Meth-
ods. Journal of Logical and Algebraic Methods in Programming, 110, 2020.

[42] J. Meseguer, M. Palomino, and N. Martí-Oliet. Equational Abstractions. Theoretical Com-
puter Science, 403(2–3):239–264, 2008.

[43] J. Meseguer and P. Thati. Symbolic Reachability Analysis Using Narrowing and its Appli-
cation to Verification of Cryptographic Protocols. Higher-Order and Symbolic Computa-
tion, 20(1–2):123–160, 2007.

[44] A. Middeldorp and E. Hamoen. Counterexamples to Completeness Results for Basic Nar-
rowing. In Proceedings of the 3rd International Conference on Algebraic and Logic Pro-
gramming (ALP 1992), volume 632 of Lecture Notes in Computer Science, pages 244–258.
Springer, 1992.

[45] P. C. Ölveczky and J. Meseguer. The Real-Time Maude Tool. In Proceedings of the
14th International Conference on Tools and Algorithms for Construction and Analysis of
Systems (TACAS 2008), volume 4963 of Lecture Notes in Computer Science, pages 332–
336. Springer, 2008.

25

[46] The Presto Website, 2020. Available at: http://safe-tools.dsic.upv.es/presto.
[47] G. Roşu. K: A Semantic Framework for Programming Languages and Formal Analysis

Tools. In Dependable Software Systems Engineering, volume 50 of NATO Science for
Peace and Security Series - D: Information and Communication Security, pages 186–206.
IOS Press, 2017.

[48] A. Rodríguez, F. Durán, A. Rutle, and L. M. Kristensen. Executing Multilevel Domain-
Specific Models in Maude. Journal of Object Technology, 18(2):4:1–21, 2019.

[49] J. R Slagle. Automated Theorem-Proving for Theories with Simplifiers, Commutativity,
and Associativity. Journal of the ACM, 21(4):622–642, 1974.

[50] P. Viry. Equational Rules for Rewriting Logic. Theoretical Computer Science, 285(2):487–
517, 2002.

26

A Full specification of the Bank Account System

fmod NAT-PRES-MONUS is

pr TRUTH-VALUE .

sorts Nat NzNat Zero .

subsort Zero NzNat < Nat .

op 0 : -> Zero [ctor] .

op 1 : -> NzNat [ctor] .

op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: 0] .

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

vars n m : Nat .

vars b b’ : Bool .

op _>_ : Nat Nat -> Bool .

eq m + n + 1 > n = true [variant] .

eq n > n + m = false [variant] .

op _>=_ : Nat Nat -> Bool .

eq m + n >= n = true [variant] .

eq n >= m + n + 1 = false [variant] .

op _-_ : Nat Nat -> Nat .

eq n - (n + m) = 0 [variant] .

eq (n + m) - n = m [variant] .

endfm

mod MANAGED-ACCOUNT is

pr NAT-PRES-MONUS .

sorts Account Msg MsgConf State .

subsort Msg < MsgConf .

op < bal:_pend:_overdraft:_threshold:_funds:_ > : Nat Nat Bool Nat Nat -> Account [ctor] .

op << bal:_pend:_overdraft:_threshold:_funds:_ >> : Nat Nat Bool Nat Nat -> Account .

op mt : -> MsgConf [ctor] .

op w : Nat -> Msg [ctor] .

op d : Nat -> Msg [ctor] .

op _,_ : MsgConf MsgConf -> MsgConf [ctor assoc comm id: mt] .

op _#_ : Account MsgConf -> State [ctor] .

op [_,_,_] : Bool State State -> State .

vars n m x h : Nat .

var b : Bool .

vars s s’ : State .

var msgs : MsgConf .

eq [true,s,s’] = s [variant] .

eq [false,s,s’] = s’ [variant] .

eq << bal: (n + h) pend: m overdraft: b:Bool threshold: h funds: f >>

= << bal: n pend: m overdraft: b:Bool threshold: h funds: f + 1 >> [variant] .

eq << bal: n pend: m overdraft: b:Bool threshold: n + h funds: f >>

= < bal: n pend: m overdraft: b:Bool threshold: n + h funds: f > [variant] .

rl [w-req] : < bal: n + m + x pend: x overdraft: false threshold: n + h funds: f > # msgs

=> < bal: n + m + x pend: x + m overdraft: false threshold: n + h funds: f >

w(m),msgs .

rl [w] : < bal: n pend: x overdraft: false threshold: n + h funds: f > # w(m),msgs

=> [m > n,

< bal: n pend: x overdraft: true threshold: n + h funds: f > # msgs,

< bal: (n - m) pend: (x - m) overdraft: false threshold: n + h funds: f > # msgs] .

rl [dep] : < bal: n pend: x overdraft: false threshold: n + m + h funds: f >

d(m),msgs

=> << bal: (n + m) pend: x overdraft: false threshold: n + m + h funds: f >> # msgs .

endm

27

B Specialization of the Bank Account System Rb

eq [$5 > $1,

< bal: $1 pend: $5 + $6 overdraft:true limit: $1 + $2 funds: $3 > # $4,

< bal: $1 - $5 pend: ($5 + $6) - $5 overdraft: false limit: $1 + $2 funds: $3 > # $4]

= [$5 > $1,

< bal: $1 pend: $5 + $6 overdraft: true limit: $1 + $2 funds: $3 > # $4,

< bal: $1 - $5 pend: $6 overdraft: false limit: $1 + $2 funds: $3 > # $4] [variant] .

eq [$5 > $5,

<bal: $5 pend: $1 + $5 overdraft:true limit: $5 + $2 funds: $3 > # $4,

< bal: 0 pend: $1 overdraft: false limit: $5 + $2 funds: $3 > # $4]

= < bal: 0 pend: $1 overdraft: false limit: $5 + $2 funds: $3 > # $4 [variant] .

eq [$5 > $1 + $5,

< bal: $1 + $5 pend: $5 + $6 overdraft:true limit: $1 + $5 + $2 funds: $3 > # $4,

< bal: ($1 + $5) - $5 pend: ($5 + $6) - $5 overdraft: false limit: $1 + $5 + $2

funds: $3 > # $4]

= < bal: $1 pend: $6 overdraft: false limit: $1 + $5 + $2 funds: $3 > # $4 [variant] .

eq [$5 > $5 + $6,

< bal: $5 + $6 pend: $1 + $5 overdraft: true limit: $5 + $6 + $2 funds: $3 > # $4,

< bal: ($5 + $6) - $5 pend: $1 overdraft: false limit: $5 + $6 + $2 funds: $3 > # $4]

= < bal: $6 pend: $1 overdraft: false limit: $5 + $6 + $2 funds: $3 > # $4 [variant] .

eq [($4 + $5) > $4,

< bal: $4 pend: $4 + $5 + $6 overdraft: true limit: $4 + $1 funds: $2 > # $3,

< bal: $4 - $4 + $5 pend: ($4 + $5 + $6) - $4 + $5 overdraft: false limit: $4 + $1

funds: $2 > # $3]

= [($4 + $5) > $4,

< bal: $4 pend: $4 + $5 + $6 overdraft: true limit: $4 + $1 funds: $2 > # $3,

< bal: 0 pend: $6 overdraft: false limit: $4 + $1 funds: $2 > # $3] [variant] .

eq [($4 + $5) > $4 + $5,

< bal: $4 + $5 pend: $4 overdraft: true limit: $4 + $5 + $1 funds: $2 > # $3,

< bal: 0 pend: 0 overdraft: false limit: $4 + $5 + $1 funds: $2 > # $3]

= < bal: 0 pend: 0 overdraft: false limit: $4 + $5 + $1 funds: $2 > # $3 [variant] .

eq [($4 + $5) > $4 + $5 + $6,

< bal: $4 + $5 + $6 pend: $4 overdraft: true limit: $4 + $5 + $6 + $1 funds: $2 > # $3,

< bal: ($4 + $5 + $6) - $4 + $5 pend: 0 overdraft: false limit: $4 + $5 + $6 + $1

funds:$2 > # $3]

= < bal: $6 pend: 0 overdraft: false limit: $4 + $5 + $6 + $1 funds: $2 > # $3 [variant] .

eq [($5 + $6) > $1,

< bal: $1 pend: $5 overdraft: true limit: $1 + $2 funds: $3 > # $4,

< bal: $1 - $5 + $6 pend: $5 - $5 + $6 overdraft: false limit: $1 + $2 funds: $3 > # $4]

= [($5 + $6) > $1,

< bal: $1 pend: $5 overdraft: true limit: $1 + $2 funds: $3 > # $4,

< bal: $1 - $5 + $6 pend: 0 overdraft: false limit: $1 + $2 funds: $3 > # $4] [variant] .

eq [($5 + $6) > $1 + $5 + $6,

< bal: $1 + $5 + $6 pend: $5 overdraft: true limit: $1 + $5 + $6 + $2 funds: $3 > # $4,

< bal: ($1 + $5 + $6) - $5 + $6 pend: $5 - $5 + $6 overdraft: false limit: $1 + $5 + $6 + $2

funds: $3 > # $4]

= < bal: $1 pend: 0 overdraft: false limit: $1 + $5 + $6 + $2 funds: $3 > # $4 [variant] .

rl [dep] : < bal: n pend: x overdraft: false threshold: n + m + h funds: f > # msgs,d(m)

=> < bal: n + m pend: x overdraft: false threshold: n + m + h funds: f > # msgs.

rl [w] : < bal: n pend: x overdraft: false threshold: n + h funds: f > # msgs,withdraw(m)

=> [m > n,< bal: n pend: x overdraft: true threshold: n + h funds: f >

msgs, < bal: n - m pend: x - m overdraft: false threshold: n + h funds: f >

msgs] .

rl [w-req] : < bal: n + m + x pend: x overdraft: false threshold: n + m + x + h funds: f > # msgs

=> < bal: n + m + x pend: m + x overdraft: false threshold: n + m + x + h funds: f > # msgs,w(m) .

28

C Specialization of the Bank Account System Rb with compression

eq f0($5, $5 + $6, $1, $2, $3, $4)

= < bal: $6 pend: $1 overdraft: false threshold: $5 + $6 + $2 funds: $3 > # $4 [variant] .

eq f0(1 + $1 + $6, $1, $2, $3, $4, $5)

= < bal: $1 pend: 1 + $1 + $2 + $6 overdraft: true threshold: $1 + $3 funds: $4 > # $5 [variant] .

eq f1($5, $1, $5 + $6, $2, $3, $4) = f0($5, $1, $6, $2, $3, $4) [variant] .

eq f1($5, $1 + $5, $5 + $6, $2, $3, $4)

= < bal: $1 pend: $6 overdraft: false threshold: $1 + $5 + $2 funds: $3 > # $4 [variant] .

eq f1($4 + $5, $4, $4 + $5 + $6, $1, $2, $3) = f2($4, $5, $6, $1, $2, $3) [variant] .

eq f1($5 + $6, $1, $5, $2, $3, $4) = f3($5, $6, $1, $2, $3, $4) [variant] .

eq f1($5 + $6, $1 + $5 + $6, $5, $2, $3, $4)

= < bal: $1 pend: 0 overdraft: false threshold: $1 + $5 + $6 + $2 funds: $3 > # $4 [variant] .

eq f1(1 + $1 + $6, $1, $2, $3, $4, $5)

= < bal: $1 pend: $2 overdraft: true threshold: $1 + $3 funds: $4 > # $5 [variant] .

eq f1($4 + $5 + $6 + $7, $4 + $5, $4 + $6, $1, $2, $3)

= f4($4, $5, $6, $7, $1, $2, $3) [variant] .

eq f2($1, 1 + $6, $2, $3, $4, $5)

= < bal: $1 pend: 1 + $1 + $2 + $6 overdraft: true threshold: $1 + $3 funds: $4 > # $5 [variant] .

eq f2($5, 0, $1, $2, $3, $4)

= < bal: 0 pend: $1 overdraft: false threshold: $5 + $2 funds: $3 > # $4 [variant] .

eq f3($4, $5, $4 + $5 + $6, $1, $2, $3)

= < bal: $6 pend: 0 overdraft: false threshold: $4 + $5 + $6 + $1 funds: $2 > # $3 [variant] .

eq f3($4 + $6, 1 + $5 + $7, $4 + $5, $1, $2, $3)

= < bal: $4 + $5 pend: $4 + $6 overdraft: true threshold: $4 + $5 + $1 funds: $2 > # $3 [variant] .

eq f3(1 + $4 + $6, $5 + $7, $4 + $5, $1, $2, $3)

= < bal: $4 + $5 pend: 1 + $4 + $6 overdraft: true threshold: $4 + $5 + $1 funds: $2 > # $3 [variant] .

eq f4($4, $5, $6, 1 + $7, $1, $2, $3)

= < bal: $4 + $5 pend: $4 + $6 overdraft: true threshold: $4 + $5 + $1 funds: $2 > # $3 [variant] .

eq f4($4, $5, 0, 0, $1, $2, $3)

= < bal: 0 pend: 0 overdraft: false threshold: $4 + $5 + $1 funds: $2 > # $3 [variant] .

eq f4($4, $5, 1 + $6, $7, $1, $2, $3)

= < bal: $4 + $5 pend: 1 + $4 + $6 overdraft: true threshold: $4 + $5 + $1 funds: $2 > # $3 [variant] .

rl [w] : < bal: n pend: x overdraft: false threshold: n + h funds: f > # msgs,w(m)

=> f1(m, n, x, h, f, msgs) .

rl [dep] : < bal: n pend: x overdraft: false threshold: n + m + h funds: f > # msgs,d(m)

=> < bal: n + m pend: x overdraft: false threshold: n + m + h funds: f > # msgs.

rl [w-req] : < bal: n + m + x pend: x overdraft: false threshold: n + m + x + h funds: f > # msgs

=> < bal: n + m + x pend: m + x overdraft: false threshold: n + m + x + h funds: f > # msgs,w(m) .

29

