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Abstract In this paper, we describe KindSpec, an automated tool that
synthesizes software contracts from programs that are written in a sig-
nificant fragment of C that supports pointer-based structures, heap ma-
nipulation, and recursion. By relying on a semantic definition of the C
language in the K semantic framework, KindSpec leverages the sym-
bolic execution capabilities of K to axiomatically explain any program
function. This is done by using observer routines in the same program to
characterize the program states before and after the function execution.
The generated contracts are expressed in the form of logical axioms that
specify the precise input/output behavior of the C routines, including
both general axioms for default behavior and exceptional axioms for the
specification error behavior. We summarize the main services provided
by KindSpec, which also include a novel refinement facility that im-
proves the quality and accuracy of the synthesized contracts. Finally, we
provide an experimental evaluation that assesses its effectiveness.

Keywords: Contract inference · Symbolic execution · Abstract sub-
sumption · Exceptions.

1 Introduction

Software contracts provide mathematical specification for the terms of the service
that software components can provide. Contracts on software are essentially
written by using program preconditions and postconditions, which are similar to
Hoare formulas that formalize the mutual obligations and benefits of the software
units or routines [34]. Contract checking can improve software reliability but
requires contracts to always be guaranteed to be consistent with the program
code, which places a heavy burden on programmers and hinders its applicability.
Moreover, while exceptional (or error) behavior specification should be integral
to the contract, error specification is highly prone to introduction of mistakes
and oversight.
? This research was partially supported by TAILOR, a project funded by EU Horizon
2020 research and innovation programme under GA No 952215, grant RTI2018-
094403-B-C32 funded by MCIN/AEI/10.13039/501100011033 and by ”ERDF A way
of making Europe”, and by Generalitat Valenciana PROMETEO/2019/098.

1



This paper presents KindSpec, an automated contract synthesis tool that
is based on abstract symbolic execution for a significant fragment of C called
KernelC [18]. KernelC supports recursive function and data structure defi-
nition, pointers, and dynamic memory allocation and deallocation (malloc and
free routines), but it lacks pointer arithmetic and the possibility to import
external code. The contracts that we synthesize essentially consist of logical as-
sertions that characterize the behavior of a program function in terms of what
can be observed in the states before and after the function execution. The in-
ferred axioms include default (general) rules and exceptions to these rules that
specify exceptional (or error) behavior; e.g., undesirable use cases or execution
side effects.

The overall quality of programs and specifications can be fairly improved
by systematically dealing with errors and exceptions. While several mainstream
languages such as C++ and Java provide built-in support for exception handling,
the C ANSI/ISO standard does not foresee any high-level way to define, throw,
and catch exceptions [1]. The usual way for handling errors in C is to define
special error return values through program constants, with the caller’s duty
being to check the returned value and to take appropriate action [21]. A known
disadvantage of this practice is that it obscures the program control flow and is
highly prone to oversight. Since exception failures can account for up to 2/3 of
system crashes and 50% of security vulnerabilities [22], the capability to infer
exceptional axioms from program code can be very helpful in this regard.

KindSpec implements an extension of the contract-discovering technique
developed in [2,3], which is based on symbolic execution, a well-known program
analysis technique that runs programs by using symbolic input values rather than
actual (concrete) values [5,30]. By abstractly representing inputs as symbols,
symbolic execution can simultaneously explore multiple paths that a program
could take, resorting to constraint solvers to construct actual instances that
would exercise the path. Roughly speaking, in the discovery methodology of [2],
given a function f of a program P , and a root-to-leaf path from the pre-state s to
the post-state s′ in the symbolic execution tree for f in P , an implicative axiom
(p ⇒ q) is synthesized that explains the symbolic path from s to s ′. Essentially,
the antecedent p (resp. consequent q) of the axiom consists of a sequence of
equations of the form o(x1, . . . xm) = vs (resp. o(x1, . . . xm) = vs′) where each
vs (resp. vs′) is the result of applying the m-ary observer function o of P to
s (resp. s ′). For example, for the case of a classical function push(x,t) that
piles up an element x at the top of a given bounded stack t, the inferred logical
axiom describes the expected behavior that, provided t was not full, the new top
element is x and the stack size is increased by one: size(t)=n ∧ isfull(t)=0 ∧
top(t)=?e ⇒ size(t)=n+1 ∧ isfull(t)=?b ∧ top(t)=x, where ?e and ?b
stand for symbolic values.

The symbolic infrastructure of KindSpec is built on top of the rewriting-
based, programming language definitional framework K, which facilitates the
development of executable semantics of programming languages and related for-
mal analysis techniques and tools, such as type inferencers or program verifiers
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[38]. In [2], the recent symbolic execution capabilities of K –that are available
from K 3.4 on– were enriched with two new features not provided by K: 1) lazy
initialization, to effectively handle symbolic memory objects; and 2) abstract
subsumption, to ensure termination without imposing fixed depth bounds. Due
to abstraction, some of the inferred axioms cannot be guaranteed to be correct
and are kept apart as candidate (or overly general) axioms.

KindSpec builds upon a previous, preliminary prototype presented in [2]
and improves it in several ways: 1) we have fairly improved the maturity and
robustness of the tool, giving support to more precise abstract domains that
allow us to deal more accurately with complex dynamic allocated data structures
such as linked lists and doubly-linked lists (including circular/cyclic lists); 2)
we improved the accuracy of the inferred contracts by extending the original
refinement process implemented in KindSpec that gets rid of less general axioms
with new functionality for supporting axiom trusting and falsification; 3) we
have extended the coverage of the analysis with the capability to infer axioms
that express exceptional behavior; this not only improves the quality of the
specification but may also suggest suitable program fixes that prevent execution
failures to occur due to the faults. The KindSpec tool is publicly available at
http://safe-tools.dsic.upv.es/kindspec2_2.

Manuel’s pioneering work on concurrent logic programming with assertions
has been a source of inspiration for our research on semantics of concurrent
languages and symbolic execution since we met in the 1990s. The aim of this
work is to honor Manuel with this paper that contributes to further advancing
the intertwining between these areas.

2 Inferring Software Contracts with KindSpec

The wide interest in formal specifications as helpers for a variety of analysis,
validation, and verification tools has resulted in numerous approaches for (semi-
)automatically computing different kinds of specifications that can take the form
of contracts, snippets, summaries, process models, graphs, automata, properties,
rules, interfaces, or component abstractions. In this work, we focus on input-
output relations; given a precondition for the state, we infer which modifications
in the state are implied, and we express the relations as logical implications that
reuse the program functions themselves. In order to achieve this, the inference
technique of KindSpec relies on a classification scheme for program functions
where a function may be a modifier or an observer, or it can play both roles. As
defined in [31], observers are operations that can be used to inspect the state
of an object, while modifiers change it. Since the C language does not enforce
data encapsulation, we cannot presume purity of any function. Hence, we do
not assume the traditional premise that observer functions do not modify the
program state and we consider as observer any function whose return type is
different from void.

Symbolic execution of a function call can be represented as a tree-like struc-
ture where each branch corresponds to a set of possible execution paths. At any
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time of the execution, KindSpec’s symbolic execution engine maintains a state
s = (pc, stmt, σ, h, φ), where pc (the program counter), stmt (the next statement
to evaluate), σ (the symbolic program store that associates program variables
with symbolic expressions), and h (the symbolic heap used to store dynamically
allocated objects) are akin to standard configurations used in operational se-
mantics. As for the path constraint φ, it is a formula that expresses a set of
assumptions that are generated whenever a branching condition on primitive
fields is taken in the execution to reach stmt. Intuitively, when symbolic exe-
cution reaches a conditional control flow statement, the logical condition that
enables each branch is conjuncted to the accumulated path constraint of each
diverging path. When the executed path ends, the associated path constraint
represents the condition that input values must satisfy in order for the execu-
tion to reach the current program point.

To provide for contract discovering, we enriched the symbolic states sup-
ported by the symbolic K framework with a new component ι (called the initial
heap) that is aimed to keep track of the heap constraints that are generated dur-
ing lazy initialization. Roughly speaking, when an instruction performs a first
access to an uninitialized object reference field, the symbolic execution forks the
current state with three different heap configurations, in which the field is respec-
tively initialized with: (1) null, (2) a reference to a new object with all symbolic
attributes, and (3) a previously introduced concrete object of the desired type.

In order to synthesize a contract for the function of interest f , a symbolic
call to f is executed with a sequence x1, . . . xn of fresh variables (simply denoted
by xn) as arguments and initial path constraint true, yielding as a result a
set F of final states. Then, for each state F in F , an instantiated initial state
I = (0, f(xn), ∅, ι, φ) which stands for the program state before executing f , is
built by joining together the initial call f(xn) with the path constraint φ and
the lazy initialization constraint ι that are both retrieved from the final state
F . The symbolic execution path from I to F is then described by means of an
axiom (p⇒ q), which is obtained by:

1. symbolically running every (feasible) m-ary program observer o on both
states I and F , over any subsequence of m arguments taken from xn and all
its possible permutations. The feasible observers are those having a subset of
f ’s arguments as parameters. Each observer execution contributes an equa-
tional explanation o(xm) = vI (resp. o(xm) = vF ) to the premise p (resp.
the consequent q) of the synthesized axiom.

2. Adding to q a last equation ret = v, where v is the value returned by the
function f at the final symbolic execution state F .

The expectation that observation functions exist or can easily be written is
reasonable. Observer calls are independently executed on I (resp. F ) so that they
cannot contaminate each other. Those observer calls that are found out to modify
the given state are disregarded since the observation could have corrupted the
observed behavior. Also, we note that lazy initialization is never applied during
the symbolic execution of observer functions since they would be exploring fresh
states beyond the analyzed symbolic execution configurations. When it is not the
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case that all of the symbolic execution branches for o(xm) return the same value,
the observation is inconclusive and a symbolic equation o(xm) =?v is built, for
fresh symbolic variable ?v.

Specification of exceptional behavior. Error specification and handling has tra-
ditionally been a challenge to the theory of abstract data types [36], which
is considered a major tool for writing hierarchical, modular, implementation-
independent specifications [24]. The main reason for this is that initial algebra
semantics considers errors just as ordinary data and then spends much effort
to discriminate errors from correct data. Our error handling approach borrows
some ideas from order-sorted semantics, which supports many different styles for
dealing with errors [26]. Roughly speaking, at the semantic level we provide the
semantic definition of the language with an explicit error supersort (supertype)
S for each program type T , such that error handling is naturally achieved by
overloading every program operator f : T1, T2, . . . Tn → T in the corresponding
error supertypes, i.e., f : S1, S2, . . . Sn → S. By this means, error return values
belong to the supertype S and are valid results for the evaluation of operator
f although they are not compatible with correct data return values of T . This
is comparable in a sense to the handling of errors in the ACSL contract speci-
fication language [6], where special error return values are introduced in the C
semantics.

In [25], Goguen suggests including all exceptional behaviors and error mes-
sages directly in the specifications by providing as much information as is helpful
about what is wrong or exceptional. In order to identify exceptional state behav-
ior and errors directly from the program code, we have enriched the symbolic
execution of [2] so that exceptional behavior is integral to the inferred con-
tract specification. First, we have identified the most common undesirable (or
erroneous) behaviors that may occur while running a KernelC1 program and
provided each of them with an error code, as shown in Table 1. Then, we cre-
ated a new predefined KernelC data type (universal supertype) consisting of
the set of error codes, and we redefined the KernelC semantic rules such that
error return values of the form (errorCode, pc) are allowed for all types, where
the program counter pc aims to identify the precise statement of the program
code that caused the error. Finally, we provided overloaded definitions of the
program functions as explained in Section 1. By this means, every circumstance
where an exception is triggered is witnessed by the corresponding error return
value, which is not only useful for debugging purposes but can also be used to
ascertain suitable program patches that avoid the errors. KindSpec internally
represents each error e (e.g., null dereference, division by zero, etc.) as the repair
problem (e, pc,V), with V being the set of affected variables, whose solutions
would represent a particular program fix. By the time being, such a fix just con-
sists of suggesting the insertion of safety checks on the variables of V at the right
program points to avoid e. The general problem of automated program repair

1 Some standard C syntactic errors such as IRT are not statically detected by K, thus
they show up at (symbolic) execution time.
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Table 1. Most common exceptions added to the KindSpec definition of KernelC.

Error Exception Descriptioncode
NPE Null Pointer Error Null dereferencing
DBZ Division By Zero Division of any number by 0
VVA Void Value Access Access to a non-pointer value of type void
NMS Non-valid Malloc Size Calling malloc with a negative or zero object

size
NOD Null Object Destruction Calling free over a null reference
UMA Undefined Memory Access Access to an undefined memory segment

(e.g., immediately after a pointer declaration)
OOS Out Of Scope Access to a variable that is out of scope
IRT Incorrect Return Type Type of return value does not match the func-

tion profile
IAT Incompatible Assign Types Mismatch between type of variable and assigned

value
NEF Non-Existing Function The called function is not defined or declared
UAC Unsuitable Call Arguments Function call does not match the function pro-

file

for heap-manipulating programs is another major endeavour that has received
increasing attention (see, e.g., [20,41]) and we left for future work.

In [8], exception handling and error recovery cases are specified by means
of “declarations” that separate the correct values and the error values into two
different subsets of their carrier sets. The semantic approach that we adopt is
more akin to [36], which differentiates compile-time sorts from run-time types,
where compile-time sorts are used to agglutinate both error and correct values
(with the error values being interpreted as meta-level data) while run-time types
are restricted to correct values. Similarly, our approach allows errors to be dealt
with at inference time (at symbolic execution level) even if the generated logical
axioms are unsorted.

The inferred contract. Given the set IA = {p1 ⇒ q1 , . . . , pn ⇒ qn} of inferred
axioms and the subset EA ⊆ IA of exceptional axioms, let us denote as DA
the set of default axioms, DA = (IA− EA). The resulting contract is given
by <Pre, Post , Loc>, where: 1) Pre is the function precondition given by
(
∨
p | (p ⇒ q) ∈ DA) that represents the admissible program input data; 2)

Post is the function postcondition given by IA; and 3) Loc is a set of references
to memory locations (function parameters and data-structure pointers and fields)
whose value might be affected by the function execution. The Loc component
of the contract is comparable to the assignable clause in standard contract
specification languages such as ACSL or JML, while the Pre and Post compo-
nents are similar to the ACSL pre- and post-conditions in contracts with named
behaviors [6].

Since we are using abstraction, some inferred axioms for function f cannot be
guaranteed to be correct and are kept apart as candidate axioms. A refinement
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post-processing is implemented in KindSpec that 1) allows the user trust that a
candidate axiom is, in fact, true, and then adds the axiom to the final contract;
2) provides support for semi-automated (testing-based) candidate axiom falsifi-
cation, removing those candidate axioms for which an instance is refuted; and
3) filters out some redundant elements from the surviving axioms by detecting
axiom subsumption. In order to deal with arithmetic, we adopt a constrained
representation p ∧ c ⇒ p′ ∧ c′ of axioms, where p and p′ are conjunctions of
equations of the form o(xm) = y, and c and c′ are integer arithmetic constraints
(e.g., y = z + 1 ∧ z ≥ 1). This constrained representation is easily achieved
by flattening each equation o(xm) = t, with t being a nonvariable term, to the
constrained form o(xm) = y ∧ y = t. Then we check axioms for constraint sub-
sumption [35]: a constraint c1 is said to subsume2 c2 if c2 implies c1 (e.g., the
constraint y = z + 1 ∧ z ≥ 1 subsumes y = 2). The notion of constraint sub-
sumption is naturally extended to constrained axioms in the obvious way: we say
that a constrained axiom p1 ∧ c1 ⇒ p′1 ∧ c′1 subsumes another constrained axiom
p2 ∧ c2 ⇒ p′2 ∧ c′2, if p1 ∪ p′2 is a subset of p′1 ∪ p2 modulo renaming γ, and the
constraint (c1 ∧ c′2)γ subsumes (c2 ∧ c′1)γ (by abuse we consider any conjunction
p of equations e1 ∧ . . .∧ en as the equation set {e1, . . . , en}). Although checking
for subsumption is not generally an easy task, we are able to make most com-
mon cases run fast by applying standard heuristics that can detect failures early
[39]. Also, in some cases KindSpec further simplifies the final set of axioms by
applying some simple, commonly occurring constraint generalization patterns to
compute more general axioms under constraint subsumption.

3 KindSpec at a glimpse

In this section, we outline the main features of the KindSpec tool. A starting
guide that contains a complete description of all the settings and detailed sessions
can be found at the tool homepage.

The granularity of the specification units (contracts) that can be generated
by KindSpec is at the level of one function, as in many state-of-the-art contract
specification approaches.

Given a program file and selected program function, the output of KindSpec
is a structured Java object that represents the inferred contract. The contract
can be either exported into a human-readable text file through the Save option of
the File menu) or saved in serialized format (through the Export contract option)
that can be then processed automatically by other techniques or tools.

Let us describe the graphical user interface (GUI) of the tool, as shown in
Figure 1. In the upper part of the right-hand side section of the input panel, a
KernelC program can be uploaded from the computer or selected from a drop-
down list of built-in program examples. In the lower part of this section, all of
the functions from the considered program are automatically loaded so that the
user can select the function for which the contract is to be inferred. Two extra
2 From a model-theoretic viewpoint, this is to say that the solution set of c1 contains
the solution set of c2.
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Figure 1. Graphical interface of KindSpec.

inference options are provided for enabling/disabling aliasing and/or abstract
subsumption (explained in the following subsections). Once everything is set, the
contract inference process is triggered by pressing the INFER! button. All of the
process details are available through several tabs at the Console that is shown on
the left-hand side section of the input panel: 1) the input Program; 2) the inferred
Contract; 3) Execution intermediate outcomes (e.g., the symbolic execution tree
for the considered function and the raw axiom set that is generated prior to
any subsequent refinement); 4) the candidate axioms that can be selected for
the Refinement process that admits trusting (i.e., explicitly marking as correct
some candidate axioms), gets rid of many redundant and spurious axioms, and
achieves in some cases falsification (i.e., disproving a candidate axiom); 5) some
Statistics of interest, including the elapsed symbolic execution time, inference
time, and number of inferred axioms; and 6) any eventual Errors that might
have arisen during KindSpec execution. Note that the Refinement tab does not
only show information, but also offers interactive entry points (through buttons)
to the axiom refinement features of KindSpec.

3.1 A running example

Figure 2 shows a fragment of a KernelC program that implements an abstract
data type for representing single-linked cyclic lists. The program code is com-
posed of five functions: 1) the function collapseC(c) implicitly assumes c is a
singly-linked cyclic list (i.e., either a circular list or a lasso) and deletes all of

8



the elements in the cycle except the first one, which becomes a self-cycle; 2) the
function isN(c) returns 1 if the pointer c references to NULL memory; 3) isE(c)
returns 1 if c points to an empty list (i.e., c->elems is NULL); 4)lenC(c) counts
up the number of elements in the circular segment of c; and 5) the auxiliary
function isPrec(c, n, t) that is used to identify the beginning of a cycle and
proceeds by checking whether the node referenced by the pointer n precedes the
node pointed by t in c.

1 #include <stdlib.h>
2
3 struct lnode {
4 int value;
5 struct lnode *next;
6 };
7 struct clist {
8 int lsize;
9 struct lnode *elems;

10 };
11
12 int collapseC(struct clist *c) {
13 struct lnode *n;
14 struct lnode *t;
15 struct lnode *head;
16
17 if(c == NULL) return 0;
18 if(c->elems == NULL) return 0;
19
20 t = c->elems;
21 n = c->elems->next;
22 while (t!=n && !(isPrec(c,n,t))) {
23 t = n;
24 n=n->next; }
25
26 head = n;
27 n = head->next;
28 while(n != head) {
29 t = n;
30 n = n->next;
31 free(t);
32 c->lsize--; }
33
34 head->next = head;
35 return 1; }
36

37 int isN(struct clist *c) {
38 return c == NULL; }
39
40 int isE(struct clist *c) {
41 return c->elems == NULL; }
42
43 int lenC(struct clist *c) {
44 struct lnode *n;
45 struct lnode *t;
46 struct lnode *head;
47 int counter;
48
49 if(c == NULL) return 0;
50 if(c->elems == NULL) return 0;
51
52 t = c->elems;
53 n = c->elems->next;
54 while (t!=n && !(isPrec(c,n,t))) {
55 t = n;
56 n=n->next; }
57
58 head = n;
59 n = head->next;
60 counter = 1;
61 while(n != head) {
62 counter++;
63 n = n->next; }
64
65 return counter;
66 }
67
68 int isPrec(struct clist *c, struct lnode *n,

struct lnode *t) {
69 [...] }

Figure 2. KernelC implementation of a cyclic list data type.

Since C does not ensure purity of functions, any program function can be
chosen for contract generation. We have selected collapseC for the running
example.

Setting the inference options. Let us describe the inference options that are
available in the right-hand side section of the panel.

Aliasing on Lazy Initialization. As we previously discussed in Section 2, when
a symbolic address is accessed for the first time, three lazy initialization cases
are considered: 1) null; 2) a reference to a new object of its respective type,
and 3) a reference to an already existing object in the heap, which allows cyclic
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data structures to be dealt with. This avoids requiring any a priori bound size
for symbolic input structures. In the third case, lazy initialization generates a
new path for each object of the same type that already exists in the heap. In
order to avoid state blow-up, the Apply aliasing on Lazy Initialization option can
be enabled on demand, with a due loss of precision on cyclic data structures, in
exchange for efficiency, when disabled.

Abstract Subsumption. Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination condition depends
on symbolic data. A classical solution is to establish a bound to the depth of the
symbolic execution tree by specifying the maximum number of unfoldings for
each loop and recursive function. As a better approach, KindSpec implements
the abstract subsumption technique of [4] that determines the length of the
symbolic execution paths in a dynamic way by using abstraction.

Following the classical abstract interpretation approach, programs are (sym-
bolically) executed in KernelC by using abstract (approximated) data and
operators rather than concrete ones. With regard to the data abstraction, when
dealing with linked lists and trees we consider summary nodes for approximating
a number of nodes in the list or tree [4]. For system states, the state abstraction
function α is defined as a source-to-source transformation that approximates
both primitive data and heaps. The abstract value of a primitive type object
field e in an abstract (summary) node nα is the set {v1, . . . vk} that contains
the k distinct valuations vi, i = 1 . . . k, of e in the m individual nodes that are
approximated by nα, with k ≤ m. A relation vα between abstract states is nat-
urally induced such that, given two abstract states s and s′, s′ vα s whenever
the set of concrete states represented by s′ is included in the set of concrete
states that are represented by s. Checking vα generally implies reasoning about
logical subsumption (implication) for constraints involving primitive data, for
which the Z3 SMT solver is used.

In the abstract symbolic execution of a program function, before entering a
loop at the current (abstract) state s′, s′ vα s is checked for every comparable
predecessor (abstract) state s of s′ in the same branch. If the check succeeds,
the execution of the loop stops.

With regard to the program functions, and particularly the observers, for
each observer function a corresponding abstract version operates on summary
nodes and preserves the original behavior. For instance, consider an observer
neg(c,n) that returns 1 when n points to a node of the list c that contains
a negative number in the value field, and returns 0 otherwise. The abstract
version of this observer may access an abstract list that contains a summary
node at the position pointed to by n. In such a case, it returns 1 only if all the
concrete values in the abstract value field of the summary node are negative, 0
when all of them are positive, and a symbolic value ?v otherwise.
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3.2 KindSpec output

KindSpec provides two main outputs: 1) the contract <Pre, Post , Loc> for the
selected function; and 2) a list of (not necessarily correct) Candidate axioms.

Figure 3 shows the synthesized contract and candidate axioms for our running
example (with enabled aliasing and abstract subsumption) as they are displayed.

PRECONDITION Pre:
(isN(c)=0 ^ lenC(c)=0 ^ isE(c)=1) || (isN(c)=0 ^ lenC(c)=1 ^ isE(c)=0) ||
(isN(c)=0 ^ lenC(c)=2 ^ isE(c)=0) || (isN(c)=0 ^ lenC(c)=3 ^ isE(c)=0)
-------------------------------------------------
POSTCONDITION Post:
A1: (isN(c)=0 ^ lenC(c)=(NPE, 56) ^ isE(c)=0) =>

(isN(c)=0 ^ lenC(c)=(NPE, 56) ^ isE(c)=0 ^ ret=(NPE, 24))
A2: (isN(c)=0 ^ lenC(c)=0 ^ isE(c)=1) => (isN(c)=0 ^ lenC(c)=0 ^ isE(c)=1 ^ ret=0)
A3: (isN(c)=1 ^ lenC(c)=0 ^ isE(c)=(NPE, 41)) =>

(isN(c)=1 ^ lenC(c)=0 ^ isE(c)=(NPE, 41) ^ ret=0)
A4: (isN(c)=0 ^ lenC(c)=1 ^ isE(c)=0) => (isN(c)=0 ^ lenC(c)=1 ^ isE(c)=0 ^ ret=1)
A5: (isN(c)=0 ^ lenC(c)=2 ^ isE(c)=0) => (isN(c)=0 ^ lenC(c)=1 ^ isE(c)=0 ^ ret=1)
A6: (isN(c)=0 ^ lenC(c)=3 ^ isE(c)=0) => (isN(c)=0 ^ lenC(c)=1 ^ isE(c)=0 ^ ret=1)
-------------------------------------------------
LOCATIONS Loc:
c->lsize
c->elems
c->elems->next
c->elems->next->next
c->elems->next->next->next
-------------------------------------------------
CANDIDATE AXIOMS Post#:
C1: (isN(c)=0 ^ isE(c)=0 ^ lenC(c)=?l0 + 2 ^ ?l0 >= 2) =>

(isN(c)=0 ^ isE(c)=0 ^ lenC(c)=?l0 ^ ?l0 >= 2 ^ ret=1) ^
C2: (isN(c)=0 ^ isE(c)=0 ^ lenC(c)=?l0 + 2 ^ ?l0 >= 2) =>

(isN(c)=0 ^ isE(c)=0 ^ lenC(c)=1 ^ ret=1)

Figure 3. Inferred contract for the collapseC function in Figure 2.

First, the precondition is shown as the disjunction of all the initial scenarios
for which the contract is defined (admissible inputs). Following the C convention,
note that the value 0 is used to represent the boolean value false, whereas the
value 1 stands for true. The postcondition consists of the generated axioms
that describe all (successful and exceptional) inferred program behaviors. We
note that one single axiom might correspond to a number of branches in the
symbolic execution tree of the function. The third contract component is the set
of overwritten program locations in the final symbolic states, which are identified
and harvested as a by-product of the symbolic execution.

Every axiom (p⇒ q) that describes exceptional behavior can be easily iden-
tified since it contains (in either p or q) at least one equation l = (errorCode, pc),
where errorCode is an error identifier (see Table 1) and pc is the last executed
instruction that triggered the exception. In Figure 3, the exceptional axiom A1
describes an execution scenario where, starting from a list c that is neither null
nor empty, both the observer lenC and the target function collapseC itself
return an exception. The associated program counters, 56 and 24, correspond
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to individual instructions n = n->next attempting to access the next field of
a null pointer n. In fact, this may happen in the case when c is not cyclic,
although cyclicity of c was taken for granted in the data type implementation.
The exceptional axiom A3 characterizes the case when the input argument is a
reference that points to a null position, which causes isE to trigger an excep-
tion. As for the axiom A2, it specifies that, whenever the input list is empty,
nothing is deleted and the list is still empty after the execution. Axioms A4 to
A6 specify the cases when the list contained a cycle (whose length is respectively
equal to 1, 2, and 3) and it was actually collapsed.

With regard to the (overly-general) candidate axioms C1 and C2, they result
from cutting down an infinite loop by means of abstract subsumption and can
be later refined as follows: 1) First, for those candidate axioms that are suspi-
cious to have spurious instances, a falsification subprocess can be triggered. This
process is undertaken by i) building initial configurations that satisfy the axiom
antecedent; ii) running the modifier function on those initial configurations; and
iii) checking if the results comply with the axiom consequent. The initial config-
urations (input values) are currently generated interactively (with specific values
provided by the user). If the falsification check succeeds, the axiom is considered
to be falsified and is consequently left out. 2) However, some candidate axioms
might be indeed correct (hence they cannot be falsified). To deal with this, users
are allowed to mark trusted candidates as correct, so that they become a part
of the contract. 3) Finally, redundant axioms are removed by means of a sub-
sumption checking process that gets rid of duplicate axioms and less general
instances. In our leading example, candidate C1 is spurious and can be trivially
falsified for any input list, whereas C2 is correct and can be trusted. Moreover, a
generalization of C2 can then be computed that subsumes A4-6. Generalizations
are achieved by recognizing families of axioms such as C2 and A4-6, which are
sets of axioms where all observer equations of the antecedent and consequent are
equal modulo renaming except for one observer (arithmetic constraints can differ
too), and then hypothesizing a more general axiom that can be used to replace
all of the family axioms. This is done by simply trying some frequent patterns
for constraint generalization; e.g., the constraint ?l0>= 1 generalizes a series of
constraints ?l0=1; . . . ; ?l0=i; ?l0>i, with i >=2, when these constraints appear
in the antecedent of i different axioms. However, since generalization for arith-
metic constraints is still an open problem, some of our constraint generalization
patterns might not lead to correct generalizations and Z3 is queried to check if
the involved constraints are actually equivalent. In the case when the verification
fails, the user is prompted to either accept or reject the generated hypothesis.
In the example, after simplifying (lenC(c)=?l0+2 ^ ?l0>=2) in the antecedent
of C2 into (lenC(c)=?l0 ^ ?l0>3), and flattening the equations lenC(c)=v of
A4-6 as (lenC(c)=?l0 ^ ?l0=v), for v=1 to v=3, we can recognize the pattern
?l0=1; ?l0=2; ?l0=3; ?l0>3 that is logically equivalent to ?l0>=1. Then, the
following hypothesis H1 is generated that subsumes C2 and A4-A6:

(isN(c)=0^lenC(c)=?l0^isE(c)=0^?l0>= 1) =>
(isN(c)=0^lenC(c)=1^isE(c)=0^ret=1).

12



At the end of the process, the final contract hence consists of axioms A1-3 and
H1.

The errors reported by the exceptional axioms A1 and A3may be later used for
providing provisional program patches by using the program counter pc to deter-
mine the right program point to insert the patch. In our leading example, regard-
ing the exception (NPE, 56) in axiom A1, a simple patch may consist in guarding
the offending memory access with an appropriate check so that the guarded ac-
cess is safe. This can be easily done replacing the sentence n = n->next; on line
56 by the guarded assignment if(n != NULL) {n = n->next;} else {break;}

4 System architecture

The architecture of the KindSpec tool is depicted in Figure 4. It essentially
consists of a main module that orchestrates the inference by invoking a number
of specialized components as follows:

Inference
module

Refinement
module

q
Program file

f

Function name

q6
Inferred con-
tract object

qSymbolic
execution tree 3

K inter-
preter kruno

KernelC
Compiled

Specification +
Abstract Domains

2 Z3 SMT solver

KindSpec

Figure 4. Architecture of the KindSpec system.

1. The K interpreter (named krun) symbolically executes the compiled K spec-
ification of the KernelC language and relies on the SMT Solver Z3 for
pruning infeasible execution branches. Z3 is also used to simplify the path
conditions and optimize the process. The K interpreter runs in Linux and
MacOS X.

2. The inference module builds the axioms that explain the initial and final
states of the symbolic execution paths and generates the inferred contract
by piecing together the function pre-condition, post-condition, and affected
program locations. Since the elapsed time for each execution of the K inter-
preter is rather high (15-20 seconds each, on average), in order to improve
performance, our implementation exploits multithreading, with an indepen-
dent thread for each symbolic execution path.
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3. The refinement module applies the refinement post-processing, which con-
sists in duplicate elimination, trusting, (test-based) falsification of overly
general axioms, and axiom subsumption checking to get rid of less general
axioms.

KindSpec is currently able to infer contracts for KernelC programs with
the summary node abstraction for linked data structures such as lists. Never-
theless, the implemented infrastructure has been designed to support further
abstract domains and other languages for which a K semantics is given.

The implementation of KindSpec contains about 7500 lines of Java source
code for the back-end and 2300 lines of K code for the extended, abstract
KernelC language specification. The abstract domain and operators have been
integrated into the abstract KernelC semantic definition written in K. Since
summary nodes occur in the memory heap during symbolic execution, this means
that abstractions are directly handled by K’s symbolic engine.

5 Experiments

We evaluated KindSpec on a set of classical contract inference benchmark pro-
grams that size in the hundreds or tens of lines of code. Our test platform was an
Intel Core2 Quad CPU Q9300(2.50GHz) with 6 GB of RAM running K v3.4 on
Maude v2.6. Table 2 summarizes the figures that we obtained for programs that
contain (both cyclic and acyclic) data structures. The specific feature that we
test within each example is described in the Program column. The LOC column
shows the program size (in lines of code). The Function column indicates the
name of the target function. The #Obs column is the number of observer pro-
gram functions. The #Paths column shows the number of root-to-leaf symbolic
paths in the deployed trees, while the #Axms column reflects how many different
axioms are retrieved from the final states of the paths. The #Cand ax column
indicates the number of overly general axioms, and the Final contract column
indicates the final number of correct axioms that are distilled as a result of the
whole process. It might happen that this number is smaller than #Axms due
to the reduction given by generalized candidate axioms subsuming more specific
axioms.

With respect to the time cost, specification inference is known to be expensive
for accurate and strong properties. We distinguish between the amount of time
taken for the symbolic execution of methods performed by K and the elapsed
time of the processing applied by our inference algorithm. The time spent in K’s
symbolic execution ranges from 1 min. to 5 min. depending on the quantity and
complexity of the method definitions and the number of cores in the user’s CPU.
On the other hand, the time taken for actual inference of contracts (once the
symbolic execution trees have been deployed) ranges from approximately 150
ms to 300 ms. Our results are very encouraging since they show that KindSpec
can infer compact and general contracts for programs that deal with common
data structures without fixing the size of dynamic data structures or limiting
the number of iterations to ensure termination. The tool infers contracts for
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Table 2. Experimental results for KindSpec on programs manipulating lists.

Program LOC Function #Obs #Paths #Axms #Cand
ax

Final
contract

cyclic_lists.c
(running
example)

95 collapseC 3 22 8 2 4

insert.c
(linked lists)

120 insert 5 17 10 3 5

insert_excp.c
(version with
errors)

90 insert 5 16 9 3 4

deallocate.c
(reduction of
heap size)

59 deallocate 2 5 5 1 2

reverse.c
(heap muta-
tion)

70 reverse 4 7 6 1 3

del_circular.c
(circular
lists)

69 delCircular 3 13 7 1 4

append.c (2
symbolic lists,
1 loop)

60 append 3 32 32 10 4

challenging programs that have recursive predicates, linked and doubly-linked
lists, and circular/cyclic lists. Assuming the program contains an appropriate
set of observers, KindSpec is able to infer accurate contracts for all of our
benchmarks.

Let us provide a brief discussion of relative benefits w.r.t. existing tools for re-
lated tasks. Most of the tools that implement contract inference techniques that
are described in the related literature are no longer publicly available for use or
experimentation. In the following, we compare KindSpec with the three avail-
able tools Daikon [19] (which is based on testing), AngelicVerifier [16] (which
implements a weakest precondition calculus), and the commercial tool for prov-
ing memory safety of C code Infer [10] (which infers separation logic assertions3
aimed to ease the identification of program bugs).

Table 3 illustrates a comparison of key features of the considered tools. There
is a column for each tool, and the nine rows stand for the accepted input lan-
guage(s); the artifacts that have to be provided as tool input ; the specifica-
tion type (either full contracts or just function preconditions) and its nature,

3 In separation logic [37], heap predicates are constituted by “separated” sub-formulae
which hold for disjoint parts of the heap. They represent either individual memory
cells, which are encoded by using points-to heap predicates (i.e., e1 7→ e2 represents
that the heap contains a cell at address e1 with contents e2), or sub-heaps (heaplets),
which are encoded by predicates that collapse various heap locations.
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Table 3. Comparison between KindSpec and other competing tools.

KindSpec Daikon AngelicVerifier Infer
Input lan-
guage

C C, .NET, Java,
Perl, Eiffel

C, Java C, .NET, Java

Tool input Source code
(C) + function
name

Source code
(Daikon)+ test
cases

Intermediate code
(Boogie) + input
specification

Intermediate
code (SIL)

Specification
type

Function-level
contracts

Heap-level con-
tracts

Function-level
preconditions

Heap-level con-
tracts

Error cases Yes No No No
Technology Abst. Symb.

Exec. in K
Instrumentation
+ Testing

Weakest prec. cal-
culus

Abst. interp. +
Bi-abduction

GUI Yes (desktop) No No Yes (online)
Last update 2020 2021 2018 2021
Operating
system

Linux,
MacOS X

Windows, Linux,
MacOS X

Windows, Linux Windows,
Linux,
MacOS X

Standalone Yes No No Yes

i.e., whether it is described at function-level (meaning that it is expressed in
terms of the observer program functions) or at heap-level (that strictly capture
the heap assignments); whether error (or exception) cases are captured in the
specification; the underlying inference technology ; the availability of a GUI ; the
date of the last update of the tool; operating system compatibility;4 and finally,
whether it is a standalone artifact. As shown in Table 3, KindSpec leverages
symbolic execution infrastructure to generate meaningful specifications for heap-
manipulating C code. Actually, only KindSpec delivers high (function-)level
whole contracts, easier to read by the user, that moreover cope with exceptional
behavior in an explicit way.

Daikon [19] (and the no longer available DySy [14]) aims to obtain (heap-
level) properties by extensive testing. Daikon works by running an instrumented
program over a given test suite, then storing all the values taken by the program
variables at both the start and the end of these runs.5 Microsoft’s Angelic Ver-
ifier [16] applies a weakest precondition calculus to infer likely (function-level)
preconditions from a given set of program traces that failed to be verified (and
thus were considered as uncertain), aimed to retry the verification task. The
contract discovery tool Infer applies to very large programs that can be writ-
ten in several source languages (C, .NET languages, and Java) but focuses on
pointer safety properties concerning the heap. Unlike KindSpec, it reasons over
a semantic, analysis-oriented Smallfoot Intermediate Language (SIL) that repre-
4 We tested the tools in Windows (versions 7 and 10), Linux (Ubuntu 18.04) and
MacOS X (10.13 High Sierra).

5 In contrast, DySy relied in concolic execution (a combination of symbolic execution
with dynamic testing) to obtain more precise (heap-level) axiomatic properties for
non-instrumented programs.
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sents source programs in a simpler instruction set describing the program’s effect
on symbolic heaps [41]. This is similar to AngelicVerifier, which relies on the in-
termediate language Boogie, designed for verification. While several compilers
translate to Boogie programs that are written in high-level languages supporting
heap manipulation (e.g., C), the inferred preconditions are expressed in terms
of Boogie, thus lacking a direct correspondence to the source language.

While Infer synthesizes Hoare triples that imply memory safety and can
identify potential flaws (which is indeed its main feature), no precondition is
synthesized for failing attempts to establish safety; these findings are simply
returned to the user in the form of a bug report. Also, the contracts generated
by Infer are not accessible to users through the web interface of the tool. A last
distinguished feature of our tool is the refinement functionality that provides
interactive support, through a graphical user interface, for axiom falsification
and trusting.

6 Conclusion and related work

Let us briefly discuss those strands of research that have influenced our work
the most, independently of the current availability of a companion automated
tool. Our axiomatic representation is inspired by Axiom Meister [40] (currently
unavailable), which relied on a model checker for (bounded) symbolic execution
of .NET programs and generates either Spec# specifications or parameterized
unit tests. Similarly to [40], we aim to infer rich, function-level characterizations
that are easily understandable; however, we generate simpler and more accurate
formulas that avoid reasoning with the global heap because the different pieces
of the heap that are reachable from the function argument addresses are also
kept separate in K. Moreover, our approach is generic, and thus potentially
transferable with reasonable effort to other programming languages for which a
semantic definition is formalized in K.

Besides Daikon [19] and DySy [14], other approaches based on testing led
to the development of AutoInfer [42] for inferring heap-level postconditions, the
invariant discovery tool DIDUCE [28], the QuickSpec tool [13] that distils equa-
tional laws concerning Haskell functions, and the (never released) experimental
prototype of Henkel and Diwan [29] that generalizes the results of running tests
on Java class interfaces as an algebraic specification.

An alternative approach to software specification discovery is based on in-
ductive machine learning (ML) such as the PSYCO project for Java Pathfinder
[23] (that combines ML with symbolic execution to synthesize temporal inter-
faces for Java classes in the form of finite-state automata), and Adabu [15] (that
mines state-machine models of object behavior from runs of Java programs).

Regarding the specific thread of research that concerns the inference of spec-
ifications for heap-manipulating programs with dynamic data structures, special
mention deserve angelic verification [16] and the distinct separation logic-based
approaches, from the early footprint analysis technique that discovers program
preconditions [11] to the automatic deep-heap analysis tool Infer [9]. Typical
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properties that can be inferred by these tools regard safe memory access or the
absence of memory leaks. No longer maintained are Infer’s predecessor, Abduc-
tor [12], and the shape analysis tool SpInE that synthesizes heap summaries
à la Hoare [27]. Also based on separation logic are [32] and [33], which rely
on symbolic execution with abstraction to provide verified program repair and
(heap-level) invariant generation, respectively.

This work improves existing approaches and tools in several ways besides
those mentioned in Section 5. While testing-based approaches and learning-based
approaches are limited to ascertain properties that have not been previously fal-
sified by a (finite) number of examples or tests, KindSpec is able to guarantee
correctness/completeness under some conditions in many practical scenarios [2];
moreover, the correctness of the delivered specifications can also be ensured by
using the existing K formal analysis tools. In comparison to classical symbolic
methods, we do not need to fix the size of arrays and dynamic structures or
limit the number of iterations to ensure termination in the presence of loops;
instead, we handle unbounded structures by means of lazy initialization and
ensure termination of symbolic execution procedures by using abstraction. Fi-
nally, our experiments in Section 5 show that KindSpec infers rich contracts
for challenging programs having recursive predicates and complex, dynamically
allocated nested data structures such as singly/doubly linked lists, being them
circular/cyclic or not, which are handled by few competing tools. In order to
improve accuracy and applicability of our tool, in future work we plan to extend
the supported abstract domains to cope with more sophisticated data structures
[7,17] and provide support for automated verification.
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