
Optimization of Rewrite Theories by Equational Partial
Evaluation ?

M. Alpuente1, D. Ballis2, S. Escobar1, and J. Sapiña1

1 VRAIN, Universitat Politècnica de València, Valencia, Spain
{alpuente,sescobar,sapina}@upv.es

2 DMIF, Università degli Studi di Udine, Udine, Italy
demis.ballis@uniud.it

Abstract. In this paper, we develop an automated optimization framework for rewrite the-
ories that supports sorts, subsort overloading, equations and algebraic axioms with free/non-
free constructors, and rewrite rules modeling concurrent system transitions whose state
structure is defined by means of the equations. The main idea of the framework is to make
the system computations more efficient by partially evaluating the equations to the specific
calls that are required by the transition rules. This can be particularly useful for automat-
ically optimizing rewrite theories that contain overly general equational theories which
perform unnecessary and costly computations involving pattern matching and/or unifica-
tion modulo equations and axioms. The transformation is based on a suitable unfolding
operator parameter that relies on the symbolic operational engine of Maude’s equational
theories, called folding variant narrowing, together with a generic abstraction operator.
Depending on the properties of the rewrite theory, the unfolding and abstraction operators
must be fine-tuned to achieve the biggest optimization possible while ensuring termination
and total correctness of the transformation. We formalize two instances of our scheme for
the case when the rewrite theory either has an infinite number of most general variants
or a finite number of most general variants. Finally, we discuss some experimental results
which demonstrate that the proposed optimization technique pays off in practice.

1 Introduction

Rewriting Logic (RWL) is a logic of change that extends equational logic by adding rewrite rules
that are used to describe non-deterministic transitions of concurrent systems. Rewriting Logic
is efficiently implemented in the high-performance system Maude [23]. Roughly speaking, a
rewrite theory R = (Σ,E]B,R) seamlessly combines a term rewriting system (TRS) R, which
specifies the system dynamics, with an equational theory E that defines the static structure of
the system states as terms of an algebraic datatype. Given a signature Σ of program operators to-
gether with their type definition, the equational theory E = (Σ,E]B) combines, in turn, a set E
of equations (that are implicitly oriented from left to right and operationally used as simplifica-
tion rules) on Σ and a set B of commonly occurring axioms such as associativity, commutativity,
and identity that are essentially used for B-matching3 (and are implicitly expressed in Maude as
operator attributes).
? This research was partially supported by TAILOR, a project funded by EU Horizon 2020 research

and innovation programme under GA No 952215, the EU (FEDER) and the Spanish MCIU under
grant RTI2018-094403-B-C32, and by Generalitat Valenciana under grant PROMETEO/2019/098. Julia
Sapiña has been supported by the Generalitat Valenciana APOSTD/2019/127 grant.

3 For example, assuming a commutative binary operator ∗, the term s(0) ∗ 0 matches within the term
X ∗ s(Y) modulo the commutativity of symbol ∗ with matching substitution {X/0,Y/0}.

Partial evaluation (PE) is a program optimization technique (also known as program spe-
cialization) that, given a program and some of its input data, produces a residual or specialized
program. Running the residual program on the remaining data is generally faster and yields the
same result as running the original program on all of its input data [34]. PE has been widely ap-
plied to a variety of programming paradigms, including functional programming [34] and logic
programming [36], where it is usually called partial deduction (PD). In contrast to classical PE,
partial deduction allows to not only instantiate input variables with constant values but also with
terms that may contain variables, thus providing extra capabilities for specialization [36, 37].

Narrowing is a symbolic mechanism that extends term rewriting by replacing pattern match-
ing with unification [32, 51]. The Equational Narrowing-driven Partial Evaluation (EQNPE)
scheme of [6] extends PD to the specialization of order-sorted equational theories with respect
to a set of input terms by making use of folding variant narrowing (also called FV-narrowing
[31]). Thanks to the combined (logic and functional) capabilities of narrowing, the achieved
transformation is strictly more powerful than the PE of both logic programs and functional pro-
grams [17]. In the EQNPE scheme, the key ingredients of PD get generalized to an order-sorted
typed setting modulo axioms by formalizing: 1) a narrowing-based unfolding operator that en-
sures correction of the transformation; 2) order-sorted equational homeomorphic embedding for
local termination (i.e., finiteness of unfolding); 3) order-sorted equational closedness (a recur-
sive notion ensuring that all possible calls that may arise during the execution of the residual
program are covered by the specialization) for completeness; and 4) term abstraction (based
on order-sorted equational anti-unification) for global termination of the whole specialization
process.

While the EqNPE scheme of [6] only applies to deterministic and terminating equational
theories, partial evaluation has never been investigated in the context of non-deterministic and
non-terminating rewrite theories. This paper addresses the specialization of such rewrite theories
R = (Σ,E]B,R), whose rewrite rules R are defined on top of an underlying equational theory
E = (Σ,E]B). Altogether, the rewrite theory R models a concurrent system that evolves by
rewriting the system states by means of equational rewriting, i.e., rewriting with the rewrite rules
of R modulo the equations and axioms of E [38]. To be executable in Maude, the equational
theory E is required to be convergent (i.e., the equations of E are confluent, terminating, and
sort-decreasing) and coherent modulo B. This ensures that every input expression t has one (and
only one) canonical form t↓~E,B up to B-equality. On the other hand, the rules of R are required
to be coherent w.r.t. E , which allows the rewrite steps with R to always be postponed in favor
of deterministically rewriting with E .

In Maude, rewrite theories can also be symbolically executed by narrowing at two lev-
els: (i) narrowing with the (typically non-confluent and non-terminating) rules of R modulo
E = (Σ,E]B); and (ii) narrowing with the (explicitly) oriented equations ~E modulo the axioms
B. They both have practical applications: (i) narrowing with R modulo E = (Σ,E]B) is useful
for solving reachability goals [43] and logical model checking [29]; and (ii) narrowing with ~E
modulo B is useful for E -unification and variant computation4 [31]. Both levels of narrowing
should meet some conditions: (i) narrowing with R modulo E is performed in a “topmost” way
(i.e., the rules in R rewrite the global system state) and there must be a finitary equational uni-
fication algorithm for E ; and (ii) narrowing with ~E modulo B requires that B is a theory with
a finitary unification algorithm and that E is convergent. When (Σ,E]B) additionally has the

4 A variant [24] of a term t in the theory E is the irreducible form of tσ in E for a given substitution σ ;
in symbols, it is represented as the pair (tσ↓~E,B,σ).

2

property that a finite complete set of most general variants exists for each term, known as the
finite variant property (FVP), E -unification is finitary and topmost narrowing with R modulo
the equations and axioms can be effectively performed. For variant computation and (variant-
based) E -unification, the folding variant narrowing5 (or FV-narrowing) strategy of [31] is used
in Maude, whose termination is guaranteed for theories that satisfy the FVP (also known as
finite variant theories). Many relevant theories have the FVP, including theories of interest for
Boolean satisfiability and theories that give algebraic axiomatizations of cryptographic functions
used in communication protocols.

Partial evaluation techniques typically remove some computation states by performing as
much program computation as possible, hence contracting the search space because some tran-
sitions are removed. However, narrowing-based analysis of rewrite theories generally requires
the whole search space of a rewrite theory to be analyzed (i.e., all system states and transitions).
Given the rewrite theory R = (Σ,E]B,R), to avoid hindering said analysis, our method pro-
ceeds by specializing the underlying order-sorted equational theory E = (Σ,E]B) to the precise
use that the rules of R make of the functions that are defined in E . This is done by partially eval-
uating E with respect to the maximal (or outermost) function calls that can be retrieved from
the rules of R, in such a way that E gets rid of any possible overgenerality. Actually, while the
transformation highly contracts the system states and, more generally, the functional computa-
tions given by E are greatly compacted, no system state disappears. Moreover, in many cases
we transform a rewrite theory whose operators obey structural, algebraic axioms such as asso-
ciativity, commutativity, and unity into a much simpler rewrite theory whose operators obey no
axioms. This makes it possible to run such theories into an independent rewriting infrastructure
that does not support rewriting modulo axioms. Furthermore, some costly analyses that may re-
quire significant (or even unaffordable) resources, both in time and space, can now be effectively
performed after the transformation.

A preliminary version of this work was presented in [5].

Our Contribution The main contributions of this paper are as follows.

1. We formalize a specialization scheme for rewrite theories that extends the equational, narrowing-
driven partial evaluation approach of [6] to the specialization of rewrite theories.

2. We ascertain the key requirements to be satisfied by the rewrite theory to guarantee the for-
mal properties of our framework and we provide full proofs of all technical results in the
article, which include preservation of executability conditions, termination, and strong cor-
rectness.

3. The original EqNPE framework of [6] was originally designed to deal with free construc-
tors for which no equality relation can be established between any two different constructor
symbols. This limitation was due to the fact that we did not consider subsort overloading

5 The main idea of folding variant narrowing is to “fold” the search space of all FV-narrowing computa-
tions by using subsumption modulo B. That is, folding variant narrowing avoids computing any variant
that is a substitution instance modulo B of a more general variant. Note that this notion is quite differ-
ent from the classical folding operation of Burstall and Darlington’s fold/unfold transformation scheme
[21, 16], where unfolding is essentially the replacement of a call by its body, with appropriate substi-
tutions, and folding is the inverse transformation, i.e., the replacement of some piece of code by an
equivalent function call.

3

(i.e., the overloading of operators that are related in the subsort ordering) for constructor
symbols. To deal with it, in this article we naturally extend some key notions of the EqNPE
framework, including the definitions of equational closedness and equational abstraction.
This allows us to deal with non-free constructors as overloaded function symbols that may
behave as a constructor operator for some typing, while behaving as a defined function
symbol for a higher typing. In line with the extended definitions, we have correspondingly
extended our technical results in [6] for dealing with sorts and subsorts in a finer way.

4. Similarly to [6], for the equational component of the rewrite theory, our specialization al-
gorithm follows the classic control strategy of logic specializers [37], with two separate
control levels: 1) local control (managed by a generic unfolding operator) that avoids in-
finite evaluations and is responsible for the construction of the residual equations for each
specialized call; and 2) global control or control of polyvariance (managed by a generic
abstraction operator) that avoids infinite iterations of the partial evaluation algorithm and
decides which specialized functions appear in the transformed theory. To further optimize
both rules and equations, we introduce a final, post-processing compression transformation
that highly contracts the system states and the functional computations occurring in the spe-
cialized rewrite theory.

5. We provide two different implementations of the unfolding operator based on FV-narrowing
that adapt the generic technique to the FVP behavior of the equational theory E by distin-
guishing two cases:

(a) E fulfills the finite variant property: since FV-narrowing trees are always finite in finite
variant theories for any input term, the unfolding strategy is formulated as a process of
total evaluation where the defined functions that have the FVP which appear in right-
hand sides of rules are completely evaluated by computing a complete set of most gen-
eral variants.

(b) E does not satisfy the finite variant property: in this case, a subsumption check is per-
formed at each FV-narrowing step that compares (under order-sorted equational home-
omorphic embedding [6]) the current term with all previous narrowing redexes in the
same derivation so that all infinite FV-narrowing computations are safely stopped.

6. We have implemented an experimental prototype system called Presto, and we provide an
empirical evaluation of the system on a set of benchmark problems that test the speedups
achieved for both rewriting and narrowing computations.

Plan of the paper The paper is organized as follows. In Section 2, we recall some preliminary
notions and we provide the specification of a client-server communication protocol which is
used as running example throughout the paper. The generic specialization scheme for rewrite
theories is described in Section 3. After introducing the folding variant narrowing strategy in
Section 4, in Section 5 we instantiate the specialization scheme for the two classes of equa-
tional theories already mentioned: theories that fulfill the FVP and theories that do not fulfill the
FVP. The proposed scheme instantiations come with some non-trivial examples that highlight
the power of our specialization methodology. Section 6 provides an experimental evaluation in
the Presto system, which implements the proposed specialization framework. Our benchmarks

4

demonstrate the program optimization that is achieved for narrowing as well as for rewriting
computations. In Section 7, we discuss some related work and we conclude. Proofs of the main
results are given in Appendix A, while Appendix B provides the full specification of the client-
server communication protocol.

2 Preliminaries

Let Σ be a signature that includes typed operators (also called function symbols) of the form
f : s1 . . .sm → s, where si, for i = 1, . . .n, and s are sorts in a poset (S,<) that models subsort
relations (e.g., s < s′ means that sort s is a subsort of s′). Σ is assumed to be preregular, so
each term t has a unique least sort under <, denoted ls(t). The connected components of (S,<)
are the equivalence classes [s] corresponding to the least equivalence relation ≡< containing
<. For technical reasons, it is useful to assume that Σ has no ad-hoc overloading.6 However,
this assumption entails no real loss of generality: any Σ can be transformed into a semantically
equivalent signature with no ad-hoc overloading (by symbol renaming). Note that avoiding ad-
hoc overloading ensures that Σ is sensible, in the sense that for any two typings f : s1 . . .sn →
s and f : s′1 . . .s

′
n → s′ of a n-ary function symbol f , if si and s′i are in the same connected

component of (S,<) for 1≤ i≤ n, then s and s′ are also in the same connected component; this
provides the right notion of unambiguous signature at the order-sorted level. Binary operators
in Σ may have attached an axiom declaration that specifies any combinations of algebraic laws
such as associativity (assoc), commutativity (comm), and identity (id). By ax(f), we denote the
set of algebraic axioms for the operator f . By TΣ(X), we denote the usual non-ground term
algebra built over Σ and the set of (typed) variables X . By TΣ, we denote the ground term
algebra over Σ. By notation x : s, we denote a variable x with sort s. Any expression tn denotes
a finite sequence of terms t1 . . . tn, n ≥ 0. A position w in a term t is represented by a sequence
of natural numbers that addresses a subterm of t (Λ denotes the empty sequence, i.e., the root
position). Given a term t, we let Pos(t) denote the set of positions of t. We denote the usual
prefix preorder over positions by≤. By t|w, we denote the subterm of t at position w. By root(t),
we denote the operator of t at position Λ.

A substitution σ is a sorted mapping from a finite subset of X to TΣ(X). Substitutions are
written as σ = {X1 7→ t1, . . . ,Xn 7→ tn}. The identity substitution is denoted by id. Substitutions
are homomorphically extended to TΣ(X). The application of a substitution σ to a term t is
denoted by tσ . The restriction of σ to a set of variables V ⊂X is denoted σ|V . Composition of
two substitutions is denoted by σσ ′ so that t(σσ ′) = (tσ)σ ′.

A Σ-equation (or simply equation, where Σ is clear from the context) is an unoriented pair
λ = ρ , where λ ,ρ ∈TΣ,s(X) for some sort s ∈ S, where TΣ,s(X) is the set of terms of sort s
built over Σ and X . An equational theory E is a pair (Σ,E]B) that consists of a signature Σ, a
set E of Σ-equations, and a set B of equational axioms (e.g., associativity, commutativity, and/or
identity) declared for some binary operators in Σ. The equational theory E induces a congruence
relation =E on TΣ(X).

A term t is more general than (or at least as general as) t ′ modulo E , denoted by t ≤E t ′, if
there is a substitution γ such that t ′ =E tγ . We also define t 'E t ′ iff t ≤E t ′ and t ′ ≤E t. By abuse
of notation, we write ≤B and 'B when B is an axiom set.

6 Given the overloaded operator f : s1 . . .sm → s0 and f : s′1 . . .s
′
n → s′0, subsort overloading means that

m = n and, for all i, 0 ≤ i ≤ n, si and s′i belong to the same connected component. Otherwise, the
overloading of f is called ad-hoc.

5

A substitution θ is more general than (or at least as general as) σ modulo E , denoted by
θ ≤E σ , if there is a substitution γ such that σ =E θγ , i.e., for all x ∈X ,xσ =E xθγ . Also,
θ ≤E σ [V] iff there is a substitution γ such that, for all x ∈V, xσ =E xθγ .

An E -unifier for a Σ-equation t = t ′ is a substitution σ such that tσ =E t ′σ . By CSUE (t = t ′),
we denote a complete set of E -unifiers for the equation t = t ′ so that any E -unifier of t = t ′ is
less general modulo E than (at least) one element in the set.

A rewrite rule (or simply rule) is an expression of the form λ ⇒ ρ , where λ ,ρ ∈TΣ(X). A
rule λ ⇒ ρ is sort-decreasing if ls(ρ)≡< ls(λ). A rewrite theory is a triple R = (Σ,E]B,R),
where (Σ,E]B) is an equational theory and R is a set of rewrite rules. A rewrite theory (Σ,E]
B,R) is called topmost if there is a sort State such that: (i) for each rule λ ⇒ ρ , ls(λ)≡< State
and ls(ρ) ≡< State; and (ii) there is no symbol f : t1 . . . tn→ s ∈ Σ and i ∈ {1, . . . ,n} such that
s ≡< State and ti ≡< State. Topmost rewrite theories provide a natural computation model for
concurrent systems as shown in the following example.

Example 1. Let us consider a topmost rewrite theory R = (Σ,E]B,R) that encodes a client-
server communication protocol. The code snippet in Figure 1 shows a fragment of the theory
signature Σ that includes the most relevant sorts and operators of the considered protocol speci-
fication.

Specifically, the signature Σ includes several operators and sorts that model the protocol
entities. Names of the sorts are self-explanatory: for example, servers are typed with sort Serv,
clients with sort Cli, and messages with sort Message.

Messages are encoded as non-empty, associative sequences t1 . . .tn, where, for the sake of
simplicity, each ti is a term of sort Symbol in the alphabet {a,b,c}. We assume that the sort
Symbol is a subsort of Message; hence, any symbol is also a (one-symbol) message. Clients are
represented as 5-tuples of the form [C,S,Q,K,V] of sort Cli, where C is the client’s name,
S is the name of the server that C wants to communicate with, Q is a message encoding a
client request, K is a natural number (specified in Peano’s notation) that determines an encryp-
tion/decryption key for messages, and V is a constant value that models the client status. Initially,
the status is set to the initial default value mt, and it changes to success whenever a server ac-
knowledges message reception. Servers are simply modeled by means of pairs of the form [S,K]

of sort Serv, where S is a server name, and K is an encryption/decryption key. All network pack-
ets are represented as pairs of the form Host <- CNT of sort Packet, where Host is a client
or server recipient and CNT specifies the packet content. Specifically, CNT is a term {H,M}, with
H being the sender’s name and M being a message that represents either a client request or a
server response. System states are formalized as multisets < t1 &. . .& tm > of clients, servers,
and network packets via the associative and commutative operator & whose unity element is
the constant null. System states have sort State.

The protocol dynamics is specified by the term rewriting system R in R that consists of the
following three rewrite rules, where clients and servers agree on a shared key K.

rl [req] : < [C,S,Q,K,mt] & ST > => < (S <- {C,enc(Q,K)}) & [C,S,Q,K,mt] & ST > .

rl [reply] : < (S <- {C,M}) & [S,K] & ST > => < (C <- {S,dec(M,K)}) & [S,K] & ST > .

rl [rec] : < (C <- {S,Q}) & [C,S,Q,K,mt] & ST > => < [C,S,Q,K,success] & ST > .

More specifically, the rule req allows a client C to initiate a transmission request with a server
S by sending a message Q that is encrypted by function enc(Q,K) using the client’s key K. The
rule reply lets the server S consume a client request packet S <- {C,M} by first decrypting
the incoming message M with the server key and then sending a response packet back to C that

6

--- sort specification

sorts Nat Symbol Message Content State Packet

Cli Serv Host CliName ServName Conf Status .

subsort Symbol < Message .

subsorts Packet Cli Serv < State .

subsorts CliName ServName < Host .

--- operators for the client-server data structures

op Srv-A Srv-B : -> ServName [ctor] .

op Cli-A Cli-B : -> CliName [ctor] .

op null : -> State [ctor] .

op _&_ : State State -> State [ctor assoc comm id: null] .

op _<-_ : Host Content -> Packet [ctor] .

op {_,_} : Host Message -> Content [ctor] .

op [_,_,_,_,_] : CliName ServName Message Nat Status -> Cli [ctor] .

op [_,_] : ServName Nat -> Serv [ctor] .

op <_> : State -> Conf [ctor] .

op __ : Message Message -> Message [ctor assoc] .

op a : -> Symbol [ctor] .

op b : -> Symbol [ctor] .

op c : -> Symbol [ctor] .

op len : -> Nat .

op mt : -> Status [ctor] .

op success : -> Status [ctor] .

--- operators for the Caeser chiper

--- Symbol-to-Nat Nat-to-Symbol operators

op toNat : Symbol -> Nat .

op toSym : Nat -> Symbol .

--- Encryption/Decryption operators

op shift : Nat -> Nat .

op unshift : Nat -> Nat .

op en : Nat Nat -> Nat .

op de : Nat Nat -> Nat .

op enc : Message Nat -> Message .

op dec : Message Nat -> Message .

Fig. 1. (Fragment of the) signature of the client-server communication protocol.

includes the decrypted request message. The rule rec successfully completes the data transmis-
sion between C and S whenever the server response packet C <- {S,Q} includes a message Q

that is equal to the initial client request message. In this case, the status of the client is changed
from mt to success. Note that the transmission succeeds when the client and server use the
same key K.

7

var M : Message .

var X K : Nat .

var S : Symbol .

--- Function toNat(s) takes an alphabet symbol s as input and returns the

--- corresponding position in the alphabet.

eq toNat(a) = 0 [variant] .

eq toNat(b) = toNat(a) + s(0) [variant] .

eq toNat(c) = toNat(b) + s(0) [variant] .

--- Function toSym(n) takes a natural number n as input and returns the

--- corresponding alphabet symbol.

eq toSym(0)= a [variant] .

eq toSym(s(0)) = b [variant] .

eq toSym(s(s(0))) = c [variant] .

eq len = s(s(s(0))) --- Alphabet cardinality is equal to 3

--- Function shift(k) increments (modulo the alphabet cardinality)

--- the natural number k.

eq shift(X) = [s(X) < len,s(X), 0] [variant] .

--- Function unshift(k) decrements (modulo the alphabet cardinality)

--- the natural number k.

eq unshift(0) = s(s(0)) [variant] . --- (len - s(0))

eq unshift(s(X)) = X [variant] .

--- Function e(n,k) increments the natural number n by k units

--- (modulo the alphabet cardinality).

eq e(X,0) = X [variant] .

eq e(X,s(Y)) = e(shift(X),Y) [variant] .

--- Function d(n,k) decrements the natural number n by k units

--- (modulo the alphabet cardinality).

eq d(X,0) = X [variant] .

eq d(X,s(Y)) = d(unshift(X),Y) [variant] .

--- Function enc(m,k) (resp. dec(m,k)) takes a message m and a

--- natural number k as input and returns the corresponding encrypted

--- (resp. decrypted) message using the Caesar cipher with key k.

eq enc(S,K) = toSym(e(toNat(S),K)) [variant] .

eq enc(S M,K) = toSym(e(toNat(S),K)) enc(M,K) [variant] .

eq dec(S,K) = toSym(d(toNat(S),K))[variant] .

eq dec(S M,K) = toSym(d(toNat(S),K)) dec(M,K) [variant] .

Fig. 2. Equations of the equational theory encoding the Caesar cipher.

8

Encryption and decryption functionality is implemented by two functions (namely, enc(M,K)
and dec(M,K)) that are specified by the equational theory E in R. The equational theory E im-
plements a Caesar cipher with key K, which is a simple substitution ciphering where each symbol
in the plaintext message is replaced by the symbol that appears K positions later in the alphabet
(handled as the list a,b,c). The cipher is circular, i.e., it works modulo the cardinality of the
alphabet. For instance, enc(a b,s(0)) delivers (b c), and dec(a b,s(0)) yields the mes-
sage (c a). The equational theory E includes the equations7 in Figure 2. In the specification,
the equational attribute variant is used to identify the equations to be considered in the folding
variant narrowing strategy, while any equations without the variant attribute are disregarded
and are only considered for rewriting.

The complete Maude specification of the client-server communication protocol can be found
in Appendix B.

2.1 Computing in Rewrite Theories

Given a rewrite theory (Σ,E]B,R), with E = (Σ,E]B), the rewriting relation modulo E (in
symbols, →R/E) can be defined by lifting the usual rewrite relation on terms to the E] B-
congruence classes [t]E]B on the term algebra TΣ(X) that are induced by =E ; in other words,
[t]E]B is the class of all terms that are equal to t modulo E]B. This means→R/E is defined as
=E ◦→R ◦=E .

A term t is called R/E -irreducible iff there is no term u such that t →R/E u. A substitution
σ is R/E -irreducible if, for every x ∈X , xσ is R/E -irreducible. We say that the relation→R/E
is terminating if there is no infinite sequence t1→R/E t2→R/E · · · tn→R/E tn+1 · · · . We say that
the relation→R/E is confluent if whenever t→∗R/E u and t→∗R/E v, then u and v can be rewritten
to some w up to E -equality. A rewrite theory (Σ,E ,R) is convergent if the rules R are sort-
decreasing and the relation→R/E is confluent and terminating.

In a convergent order-sorted rewrite theory, for each term t ∈ TΣ(X), there is a unique (up
to E -equivalence) R/E -irreducible term t ′ that can be obtained by rewriting t to R/E -irreducible
or normal form, which is denoted by t →!

R/E t ′, or t↓R/E when t ′ is not relevant. For each x ∈
Dom(σ), σ↓R/E is defined as (σ↓R/E)(x) = σ(x)↓R/E . A substitution σ is R/E -irreducible
(normalized) iff xσ is so for each x ∈Dom(σ). For a set Q of terms, we denote by Q↓R/E the set
of normal forms of the terms in Q.

Since E -congruence classes can be infinite, →R/E -reducibility is undecidable in general
because any rewrite step t →R/E t ′ involves searching through the possibly infinite equivalence
classes [t]E]B and [t ′]E]B. Therefore, R/E -rewriting is usually implemented by R,E -rewriting.
We define the relation→R,E on TΣ(X) by t →p,R,E t ′ (or simply t →R,E t ′) iff there is a non-
variable position p ∈ PosΣ(t), a rule λ → ρ in R, and a substitution σ such that t|p =E λσ

and t ′ = t[ρσ]p. To ensure completeness of R,E -rewriting w.r.t. R/E -rewriting, we require E -
coherence: for any Σ-terms u,u′,v if u =E u′ and u→R,E v, then there exists a term v′ such
that u′→R,E v′ and v =E v′. If E -coherence holds for a set of rewrite rules R, we say that R is
E -coherent. Note that, assuming E -matching is decidable,→R,E is decidable and notions such
as confluence, termination, irreducible term, and normalized substitution are defined for→R,E
straightforwardly [40].

7 For the sake of simplicity, we omitted the definition of the operators [_,_,_], _<_, and _+_ that re-
spectively implement the usual if-then-else construct, the less-than relation, and the associative and
commutative addition over natural numbers.

9

2.2 Equational Theories as Rewrite Theories

Algebraic structures often involve axioms like associativity and/or commutativity of function
symbols, which cannot be handled by ordinary term rewriting but are instead handled implicitly
by working with congruence classes of terms. This is why the equation set of an equational
theory is often decomposed into a disjoint union E = E ′]B, where B is a set of algebraic axioms
(which are implicitly expressed in Maude as attributes of their corresponding operator using the
assoc, comm, and id: keywords) that are used for B-matching, and E ′ is a set of equations that
are implicitly oriented from left to right as a set ~E ′ of rewrite rules (and operationally used as
simplification rules modulo B). By doing this, a (well-behaved) rewrite theory (Σ,B, ~E ′) can be
defined, with ~E ′ = {t⇒ t ′ | t = t ′ ∈ E ′}, which satisfies all of the conditions that we need.

This is formalized by the notion of decomposition ~E = (Σ,B,~E) of an equational theory
E = (Σ,E]B).

Definition 1 (Decomposition [30]). Let E = (Σ,E]B) be an order-sorted equational theory.
We call (Σ,B,~E) a decomposition of E if (Σ,B,~E) is an order-sorted rewrite theory satisfying
the following properties:

1. B is regular, i.e., for each t = t ′ in B, we have Var(t) = Var(t ′), and linear, i.e., for each
t = t ′ in B, each variable occurs only once in t and in t ′.

2. B is sort-preserving, i.e., for each t = t ′ in B and substitution σ , we have tσ ∈ TΣ,s(X) iff
t ′σ ∈TΣ,s(X), for each sort s in the signature. Furthermore, for each equation t = t ′ in B,
all variables in Var(t) and Var(t ′) have a common top sort.

3. B has a finitary and complete unification algorithm, which implies that B-matching is de-
cidable.

4. The rewrite rules in ~E are convergent (i.e., confluent, terminating, and sort-decreasing), and
B-coherent.

Normal forms t ↓~E,B in a decomposition (Σ,B,~E) are also called canonical forms.
Note that the mild requirements listed in Definition 1 are satisfied by most of the equational

theories that are used in practice. In particular, the axiom set of commonly occurring equational
theories only includes combinations of associativity (A), commutativity (C) and identity (U)
axioms, and all the three axioms are regular, linear and sort-preserving. Furthermore, there exist
finitary and complete unification algorithms for modular axiom combinations such as ACU,
AC, CU, C, and U. The remaining cases (namely, A and AU) are partially supported by Maude
(hence by our framework) because unification modulo A and AU are generally infinitary, yet
Maude generates a complete and finitary set of equational unifiers for many A and AU unification
problems [26].

It is worth noting that the Maude system automatically provides B-coherence completion
w.r.t. rewriting, for rules and equations, for any combination of associativity and/or commutativ-
ity and/or identity axioms. That is, the specified rules and equations are automatically completed
with no need for user intervention. Note that, for narrowing derivations, B-coherence of rules
and equations must be explicitly ensured by the user (see [41]). We often abuse notation and say
that (Σ,B, ~E ′) is a decomposition of an order-sorted equational theory (Σ,E]B), where E ′ is
the explicitly extended B-coherent completion of E.

The Maude interpreter implements rewriting modulo E]B by means of two much simpler
relations than→R/E and→R,E , namely→R,B and→~E,B, so that rules and (oriented) equations
can be intermixed in the rewriting process by simply using an algorithm of matching modulo B.

10

Then, an (R,E]B)-rewrite step→R,~E]B on a term t in the rewrite theory R = (Σ,E]B,R) can
be implemented, without loss of completeness, by applying the following rewrite strategy: (i)
reduce t w.r.t.→~E,B to the canonical form t ↓~E,B; and (ii) rewrite t ↓~E,B w.r.t.→R,B.

A rewrite sequence t →∗
R,~E]B

t ′ in the rewrite theory R = (Σ,E]B,R) is then deployed as
the (possibly infinite) rewrite sequence (with t0 = t and tn↓~E,B= t ′)

t0→∗~E,B t0↓~E,B→R,B t1→∗~E,B t1↓~E,B→R,B . . .→R,B tn↓~E,B
that interleaves →~E,B rewrite steps and →R,B rewrite steps following the strategy mentioned
above. Note that, following this strategy, after each rewrite step using→R,B, generally the result-
ing term ti, i = 1, . . . ,n, is not in canonical normal form and is thus normalized before the sub-
sequent rewrite step using→R,B is performed. Also, in the precise strategy adopted by Maude,
the last term of a finite computation is finally normalized before the result is delivered.

Example 2. Consider the rewrite theory R =(Σ,E]B,R) in Example 1 together with the system
state

t0 = [Cli-A,Srv-A,a,shift(s(0)),mt] & [Srv-A,s(s(0))].

Then, there exists the following one-step rewrite sequence

t0→∗R,~E]B t1↓~E,B where

t1↓~E,B= (Srv-A <- {Cli-A,c}) & [Srv-A,s(s(0))] & [Cli-A,Srv-A,a,s(s(0)),mt]

The considered rewrite sequence specifies an initial communication request from client Cli-A to
server Srv-A using the key K=s(s(0)) and an initial message a. Maude implements t0→∗R,~E]B
t1↓~E,B as the rewrite sequence

t0→+
~E,B

t0↓~E,B→R,B t1→+
~E,B

t1↓~E,B

where the req rule is applied. More specifically, the rewrite sequence t0→+
~E,B

t0↓~E,B equationally
simplifies the initial state t0 into its canonical form t0↓~E,B by completely evaluating the function
call shift(s(0)) into the term s(s(0)). Then the req rule is applied to t0↓~E,B and a new term

t1 = [Srv-A,s(s(0))] & (Srv-A <- {Cli-A,enc(a, s(s(0)))}) & [Cli-A,Srv-A,a,s(s(0)),mt]

is yielded that is further simplified into the canonical form t1↓~E,B by normalizing the function
call enc(a,s(s(0))) with the oriented equations in ~E.

2.3 Symbolic Computation in Rewrite Theories

Similarly to rewriting modulo an equational theory E , where syntactic pattern-matching is re-
placed with matching modulo E (or E -matching), in narrowing modulo an equational theory
(i.e., narrowing with the rules in R modulo the equations and axioms in E), syntactic unification
is replaced by equational unification (or E -unification). More precisely, we define the equational
narrowing relation ;R,E on TΣ(X) by t ;σ ,p,R,E t ′ (or simply t ;σ ,R,E t ′ or even t ;σ t ′) iff
there is a non-variable position p ∈ PosΣ(t), a rule λ ⇒ ρ in R, and a substitution σ such that
t|pσ =E λσ and t ′ = t[ρ]pσ . A term t is called (R,E)-strongly irreducible (also called a rigid

11

normal form [11]) iff there is no term u such that t ;σ ,p,R,E u for any position p, which amounts
to say that no subterm of t unifies modulo B with the left-hand side of any equation of E.

In a topmost rewrite theory R = (Σ,E]B,R), with E = (Σ,E]B), ;R,E is implemented
in Maude by means of a three-layer narrowing relation ;R,~E]B [22]:

1. An (R,E]B)-narrowing step from s to t with a rule l⇒ r in R can be performed iff there is
a E -unifier θ of the Σ-equation s = l such that t = rθ .

2. In turn, each E -unification problem s =?
E l of Point 1 is solved by using folding variant

narrowing in the equational theory E that computes a finite, minimal and complete set of
E -unifiers for s = l under suitable requirements [31]. Following [44], this is done by equa-
tionally narrowing the term s =?= l (that encodes the unification problem s =?

E l) to an
extra constant tt for denoting success in the rewrite theory R0 = (Σ∪{=?=, tt},B,~E∪{ε}),
where the extra8 rewrite rule ε = (X =?= X ⇒ tt) has been added to ~E in order to mimic
unification of two terms (modulo B) as a narrowing step9 that uses ε .

3. For each folding variant narrowing step using a rule in ~E modulo B in Point 2, B-unification
algorithms are employed.

The search space of topmost narrowing computations in (Σ,E] B,R) (respectively, FV-
narrowing computations in (Σ,B,~E)) can be represented as a tree-like structure that we call
topmost narrowing (respectively, FV-narrowing) tree.

Equational, (R,E]B)-narrowing computations are natively supported by Maude version 3.0
for unconditional rewrite theories.

Example 3. Consider the (partial) specification of integer numbers defined by the equations
E = {X+0= X,X+s(Y) = s(X+Y),p(s(X)) = X,s(p(X)) = X}, where variables X, Y are of sort
Int, operators p and s respectively stand for the predecessor and successor functions, and B
contains the commutativity axiom X+ Y = Y+ X. Also consider that the program signature Σ

contains a binary state constructor operator ||_,_ ||: Int Int → State for a new sort State
that models a simple network of processes that are either performing a common task (denoted
by the first component of the state) or have finished the task (denoted by the second component).
The system state t = ||s(0),s(0)+p(0) || can be rewritten to ||0,s(0) || (modulo the equations
of E and the commutativity of +) using the following rule that specifies the system dynamics:

||A,B ||⇒ ||p(A),s(B) ||, where A and B are variables of sort Int (1)

Also, a narrowing reachability goal from||V+V,0+V||to||p(0),s(0)||succeeds (in one step)
with computed answer substitution10 {V 7→ 0}, which might signal a possible programming error
in rule (1) since the number of processes in the first component of the state becomes negative.

8 In an order-sorted setting, multiple equations are actually used to cover any possible sort in R.
9 For example, by using ε , the term s(0) ∗ 0 =?= U ∗ s(V) FV-narrows to tt (modulo commutativity of
∗), and the computed narrowing substitution does coincide with the unifier modulo commutativity of the
two argument terms, i.e., {U 7→ 0,V 7→ 0}.

10 It is essentially calculated by first computing an E -unifier σ of the input term ||V+ V,0+ V || and the
left-hand side ||A,B || of rule (1), σ = {A/(V+V),B/V}. Second, an E -unifier σ ′ is computed between
the instantiated right-hand side ||p(V+V),s(V) ||and the target state ||p(0),s(0) ||, σ ′ = {V 7→ 0}. Third,
the composition σσ ′ = {A 7→ 0+0,B 7→ 0,V 7→ 0} is simplified into {A 7→ 0,B 7→ 0,V 7→ 0} and finally
restricted to the variable V in the input term, yielding {V 7→ 0}.

12

3 Specialization of Rewrite Theories

In this section, we present the specialization procedure NPERU
A , which allows a rewrite the-

ory R = (Σ,E]B,R) to be optimized by specializing the underlying equational theory E =
(Σ,E]B) with respect to the calls in the rewrite rules of R. The procedure NPERU

A extends
the equational, narrowing-driven partial evaluation algorithm EQNPEU

A of [6], which applies to
equational theories and is parametric on an unfolding operator U that is used to construct finite
narrowing trees for any given expression and an abstraction operator A that guarantees global
termination.

3.1 Partial Evaluation of Equational Theories

Given a convergent equational theory E = (Σ,E]B) and a set Q of terms (henceforth called
specialized calls), we define a transformation EQNPEU

A that derives a new equational theory
E ′ which computes the same answers (and values) as E for any input term t that is a recur-
sive instance (modulo B) of the specialized calls in Q. This means that all of the subterms of t
(including itself) are a substitution instance of some term in Q. The transformation EQNPEU

A
has two parameters, an unfolding operator U and an abstraction operator A , whose precise
meaning is clarified below.

The algorithm requires that the input equational theory E to be specialized is decomposed as
a rewrite theory ~E = (Σ,B,~E), whose only equations are the equational axioms in B and where
the equations in E are explicitly oriented from left to right as the set ~E of rewrite rules.

The transformation consists of iterating two consecutive actions:

(i) Symbolic execution (Unfolding). A finite, possibly partial folding variant narrowing tree for
each input term t of Q is generated.11 This is done by using the unfolding operator U (Q, ~E)
that determines when and how to stop the derivations in the FV-narrowing tree.

(ii) Search for regularities (Abstraction). In order to guarantee that all calls that may occur at
runtime are covered by the specialization, every (sub-)term in any leaf of the tree must be
equationally closed w.r.t. Q. This notion extends the classical PD closedness by:
1) considering B-equivalence of terms;
2) considering a natural partition of the signature as Σ = D]Ω, where Ω are the con-

structor symbols, which are used to define the (irreducible) values of the theory (also
called constructor terms), and D are the defined symbols, which are evaluated away by
equational rewriting; and

3) recursing over the term structure to handle nested function calls.
Roughly speaking, a term u is equationally closed modulo B w.r.t. Q iff either: (i) it does
not contain defined function symbols of D , or (ii) there exists a substitution θ and a (pos-
sibly renamed) q ∈ Q such that u =B qθ and the terms in θ are recursively Q-closed. For
instance, given a defined binary symbol • (i.e., • ∈ D) that does not obey any structural
axioms, the term t = a • (Z • a) is equationally closed w.r.t. Q = {a •X ,Y • a} or {X •Y},
but it is not closed with Q being {a•X}; however, it would be closed if •were commutative.

11 For simplicity, we assume that Q is normalized w.r.t. the equational theory E . If this were not the case,
for each t ∈ Q that is not in canonical form such that t ↓~E,B=C(ti), where C() is the (possibly empty)
constructor context of t ↓~E,B and ti are the maximal calls in t ↓~E,B, we would replace t in Q with the
normalized terms ti and add a suitable “bridge” equation t =C(ti) to the resulting specialization.

13

Steps (i) and (ii) of the transformation are iterated as long as new terms are generated, and the
considered abstraction operator A is used to guarantee that only finitely many expressions are
evaluated, thus ensuring global termination.

For simplicity, the formulation of the EqNPE framework in [6] does not explicitly deal with
subsort overloading of symbols, which could introduce subtle issues in the partial evaluation
process, e.g., when a given function symbol is both a defined function symbol and a constructor
operator. The new framework in this article does deal with subsort overloading via the following
definition that naturally extends the equational closedness of [6] by introducing a least sort check
to precisely identify constructor-rooted terms (i.e., terms whose top symbol is a constructor
operator).

Definition 2 ((Extended) Equational Closedness). Let (Σ,B,~E) be an equational theory de-
composition and Q be a finite set of Σ-terms, i.e., terms that are built from Σ and a countably
infinite set of variables X . Assume the signature Σ splits into a set D of defined function symbols
and a set Ω of constructor operators so that Σ= D]Ω. We say that a Σ-term t is closed mod-
ulo B, or simply B-closed, (w.r.t. Q and Σ) if closedB(Q, t) holds, where the predicate closedB is
defined as follows:

closedB(Q, t) ⇔



true if t ∈X
closedB(Q, t1)∧ . . .∧ closedB(Q, tn) if t = c(tn : sn),∃c : sn→ s ∈ Σ s.t.

c ∈Ω, ls(t) = s, n≥ 0∧
x 7→t ′∈θ closedB(Q, t ′) if ∃q ∈ Q,∃θ such that

root(t) = root(q) ∈D and
qθ =B t

f alse otherwise

A set T of terms is closed modulo B (w.r.t. Q and Σ) if closedB(Q, t) holds for each t in T . A set R
of rules is closed modulo B (w.r.t. Q and Σ) if the set that can be formed by taking the right-hand
sides of all of the rules in R is also closed modulo B. We often omit Σ when no confusion can
arise.

The main difference of Definition 2 with respect to [6] is in the case when t = c(tn) be-
cause, due to subsort overloading, we might have an overloaded symbol in Σ with two different
typings: a constructor typing and a defined typing. To cope with this, we need to search the
very specific constructor declaration that matches the input term t; i.e., c : sn → s ∈ Σ, n ≥ 0,
with c ∈Ω and ls(t) = s. More precisely, we adopt the natural assumption that any constructor
term is still constructor under instantiation (preregular-below condition in [50]). In other words,
the preregular-below condition states that every overloaded symbol in Σ cannot have a defined
typing that lies below any constructor typing for the same symbol in the sort poset.

Given a term t, its least-sort ls(t) provides the information that is required to establish
whether the top symbol of t is (or is not) a constructor operator and allows us to deal with
non-free12 constructor operators (whose behavior is defined through equations), which could
not be handled by our previous framework in [6].

Example 4. Consider the following Maude program that encodes an equational theory with an
overloaded operator c and an empty set of axioms B = /0:

12 A constructor operator c ∈Ω is free in E if and only if, for every c-rooted term t, there is no c′-rooted
constructor term t ′, with c′ , c, such that t ,B t ′ and t =E t ′ (i.e., t↓~E,B= t ′). For the case when B= /0, this
is equivalent to say that free constructors only obey the strict equality axiom c(X1, ..Xn) = c′(Y1, ..,Yn)
⇔ c = c′ and Xi = Yi, for i = 1, ..,n.

14

fmod OVERLOAD is

sorts A B .

subsort A B < C .

op a : -> A [ctor].

op b : -> B [ctor].

op c : A -> A [ctor] .

op c : B -> B .

eq c(X:B) = b .

endfm

The [ctor] attribute is the Maude syntax that is used to label constructor operators. Note
that the program is preregular-below since the constructor typing c : A -> A for the over-
loaded operator c and its defined typing are incomparable in the sort poset. In particular, c : B

-> B does not lie below c : A -> A.
The term c(a) is constructor and its least sort matches the declaration op c : A -> A

whereas the term c(b) is not constructor and its least sort matches the declaration of the defined
symbol op c : B -> B.

Also, for Q= /0, closed /0(Q, c(b)) = false, since ls(c(b))= B and the appropriate (defined)
typing op c : B -> B is selected by closed /0 to establish that c(b) is not /0-closed w.r.t. Q
because it vacuously holds that there is no term q ∈ Q that covers c(b).

In contrast, our previous framework in [6] would have erroneously classified c(b) as /0-
closed w.r.t. Q because we did not support overloaded symbols that can be constructor or defined
depending on their typing. Actually, the top symbol of c(b) would simply have been considered
to be constructor (because of the constructor typing op c : A -> A) and thus the closedness
check for c(b) w.r.t. Q would have succeeded since its argument, b, is also constructor.

Example 5. Consider the rewrite theory in Example 1 whose complete specification appears
in Appendix B. The rewrite theory is trivially preregular-below since it does not include any
overloaded symbol.

Given the set L of leaves in the FV-narrowing trees for the partially evaluated calls in
Q, in order to properly add to Q the non-closed (sub-)terms occurring in the terms of L , the
abstraction operator A (Q,L ,B) is applied, which yields a new set of terms which may need
further evaluation. The abstraction operator A (Q,L ,B) ensures that the resulting set of terms
“covers” (modulo B) the calls previously specialized and that equational closedness modulo B
is preserved throughout successive abstractions.

More formally, for the correctness of the equational partial evaluation, any instance of the
generic abstraction operator A (Q,L ,B) must agree with the following definition.

Definition 3 (Equational Abstraction [6]). Given the finite set of terms T and the already
evaluated set of terms Q, A (Q,L ,B) returns a new set Q′ such that:

1. if v ∈ Q′, then there exists u ∈ (Q∪T) and a renamed version v′ of v, such that u|p =B v′θ
for some position p and substitution θ

2. for all t ∈ (Q∪T), t is closed with respect to Q′ modulo B.

A concrete implementation of an abstract operator that meets the requirements of Definition
3 is shown in Section 5.1.

Note that the equational partial evaluation procedure does not explicitly compute a partially
evaluated equational theory. It does so implicitly, by computing a (generally augmented) set Q′

15

of partially evaluated terms that unambiguously determine the desired partial evaluation of the
equations E. The partial evaluation of E basically consists of the set E ′ of resultants tσ = t ′

that are associated with the derivations in the FV-narrowing tree from a root t ∈ Q′ to a leaf t ′

with computed substitution σ (i.e., the accumulated substitution along the narrowing derivation
to the leaf). Note that the closedness condition modulo B w.r.t. Q′ is satisfied for all function
calls that appear in the right-hand sides of the equations in E ′. We assume the existence of
a function GENTHEORY(Q′,(Σ,E]B)) that delivers the partially evaluated equational theory
E ′= (Σ′,E ′]B′) univocally determined by Q′ and the original equational theory E = (Σ,E]B),
with Σ′ = Σ and B′ = B. Formally,

GENTHEORY(Q′,E) = (Σ,{tσ = t ′ | t ∈ Q′, t ′ ∈U (Q′, ~E), t FV-narrows to t ′

with computed substitution σ}]B).

3.2 The NPERU
A Scheme for the Specialization of Rewrite Theories

The specialization of the rewrite theory R = (Σ,E]B,R) is achieved by partially evaluating the
hosted equational theory E = (Σ,E]B) w.r.t. the rules of R, which is done by using the partial
evaluation procedure EQNPEU

A of Section 3.1. By providing suitable unfolding and abstraction
operators, different instances of the specialization scheme can be defined.

The NPERU
A procedure is outlined in Algorithm 1 and it consists of two phases.

Algorithm 1 Symbolic Specialization of Rewrite Theories NPERU
A(R)

Require:
A rewrite theory R = (Σ,E]B,R), an unfolding operator U

1: function NPERU
A (R)

Phase 1. Partial Evaluation
2: R′←{(l ↓~E,B)⇒ (r↓~E,B) | l⇒ r ∈ R}
3: Q← mcalls(R′)
4: Q′← EQNPEU

A ((Σ,E]B),Q)
5: (Σ′,E ′]B′)← GENTHEORY(Q′,(Σ,E]B))

Phase 2. Compression
6: (Σ′′,E ′′]B′′,R′′)← COMPRESS((Σ,E]B,R′),(Σ′,E ′]B′),Q′)
7: return (Σ′′,E ′′]B′′,R′′)

Phase 1 (Partial Evaluation). It applies the EQNPEU
A algorithm to specialize the equational

theory E =(Σ,E]B) w.r.t. a set Q of specialized calls that consists of all of the maximal function
calls that appear in the (~E,B)-normalized version R′ of the rewrite rules of R.

Given Σ = (D]Ω), a maximal function call in a term t is a subterm t|w of t, with w ∈
Pos(t), such that (i) root(t|w) ∈D , and (ii) there does not exist w′ ∈ Pos(t), such that w′ < w and
root(t|w′) ∈D . In other words, a maximal function call in a term t is any outermost subterm of t
that is rooted by a defined function symbol of E. By mcalls(R), we denote the set of all maximal
calls in the rules of R.

16

Example 6. Let Σ be the signature { f ,g,a,b,c} where D = { f ,g}, Ω = {a,b,c}, and g and
c are associative and commutative operators. Then, the maximal function calls for the term
c(f (g(a,a)),c(g(g(b,b),a),a)) are f (g(a,a)) and g(g(b,b),a).

Example 7. Consider the set of rewrite rules R of the rewrite theory of Example 1 that speci-
fies the dynamics of our client-server communication protocol. Then, mcalls(R) ={enc(Q,K),
dec(M,K)}.

This phase produces the new set of specialized calls Q′ from which the partial evaluation
E ′ = (Σ′,E ′]B′) of E w.r.t. Q is univocally derived by GENTHEORY(Q′,(Σ,E]B)).

Phase 2 (Compression). It consists of a refactoring transformation that takes as input the rewrite
theory R ′ = (Σ,E]B,R′), the computed partially evaluated theory E ′ = (Σ′,E ′]B′), and the
final set of specialized calls Q′ from which E ′ derives. Roughly speaking, the transformation
computes a new, much more compact equational theory E ′′ = (Σ′′,E ′′]B′′) where unused sym-
bols and unnecessary repetitions of variables are removed and equations of E ′ are simplified by
recursively renaming all expressions that are Q′-closed modulo B by using an independent (i.e.,
overlap-free) renaming function that is derived from the set of specialized calls Q′.

Formally, an independent renaming ρ for Q′ is a mapping from terms to terms that is defined
as follows. For each t of sort s in Q′ with root(t) = f , we define ρ(t) = ft(xn : sn), where xn are
the distinct variables in t in the order of their first occurrence and ft : sn→ s is a new function
symbol that does not occur in Σ or Q′, and is different from the root symbol of any other ρ(t ′),
with t ′ ∈ Q′ and t ′ , t.

By abuse, we let ρ(T) denote the set T ′ = {ρ(t) | t ∈ T} for a given set of terms T .

Example 8. Consider the rewrite theory in Example 1 together with the set of specialized calls

Q = {dec(enc(M,s(s(0)))),enc(enc(M,K1),K2)}.

An initial renaming ρ for Q is given by

ρ = {dec(enc(M,s(s(0)))) 7→ f0(M),enc(enc(M,K1),K2) 7→ f1(M,K1,K2)},

where f0: Message -> Message and f1: Message Nat Nat -> Message are new func-
tion symbols.

Compression is performed by the COMPRESS function given in Algorithm 2 that relies on the
notion of best fitting calls (BFC), which is used in the renaming process for selecting the spe-
cialized calls from Q′ that best cover a given call t. Formally, given t and a set U of terms, let
AntiB(t,U) = {u ∈U | t =B uθ} be the subset of U whose elements are more general (modulo
B) than t (i.e., the anti-instances of t modulo B occurring in U). Then, we define the best fitting
calls BFCB(t,U) for t in U w.r.t. B as the subset of minimally general elements of AntiB(t,U)
(i.e., if u ∈ BFCB(t,U), then BFCB(t,U) does not contain any term that is strictly more general
than u modulo B). In symbols,

BFCB(t,U) = {u ∈ AntiB(t,U) | @u′ ∈ AntiB(t,U) s.t. u′ <B u}

Note that BFCB(t,U) may contain more than one element, and hence multiple best fitting terms
are possible for a given term t. Let us see an example.

17

Example 9. Consider a signature that contains an associative binary symbol ⊕ and the constant
operators a, b and c. Let X and Y be variables. Let t = a⊕b⊕c and U = {a⊕X ,Y⊕b⊕c}. Then,
BFCB(t,U) =U , because both a⊕X and Y ⊕b⊕ c are anti-instances of t modulo associativity
and neither a⊕X is more general than Y ⊕b⊕ c modulo A nor vice versa.

Algorithm 2 Compression algorithm
Require:

A rewrite theory R′ = (Σ,E]B,R′), a partial evaluation E ′ = (Σ′,E ′]B′) of (Σ,E]B) w.r.t. a set of
specialized calls Q.

1: function COMPRESS(R,E ′,Q)
2: Let ρ be an independent renaming for Q in
3: E ′′←

⋃
t∈Q{ρ(t)θ = RNρ (t ′) | tθ = t ′ ∈ E ′}

4: R′′←{RNρ (l)⇒ RNρ (r) | l⇒ r ∈ R′}
5: Σ′′← (Σ′ \{ f | f occurs in ((E]B)\ (E ′]B′))})∪{root(ρ(t)) | t ∈ Q}
6: B′′ = {ax(f) ∈ B′ | f ∈ Σ′∩Σ′′}
7: return (Σ′′,E ′′]B′′,R′′)

where

RNρ (t) =


c(RNρ (tn)) if t = c(tn) with c : sn→ s ∈ Σ s.t. c ∈Ω, ls(t) = s, n≥ 0

ρ(u)θ ′ if ∃θ ,∃u ∈ BFCB(t,Q) s.t. t =B uθ and θ ′ = {x 7→ RNρ (xθ) | x ∈ Dom(θ)}
t otherwise

Essentially, the COMPRESS function recursively computes, by means of the function RNρ ,
a new equation set E ′′ by replacing each call t in E ′ by a call to the corresponding renamed
function according to ρ and the best fitting calls for t in Q, i.e., BFCB(t,Q).13

Furthermore, a new rewrite rule set R′′ is also produced by consistently applying RNρ to
the rewrite rules of R′. Formally, each rewrite rule l ⇒ r in R′ is transformed into the rewrite
rule RNρ(l)⇒ RNρ(r), in which every maximal function call t in the rewrite rule is recursively
renamed according to the independent renaming ρ and BFCB(t,Q). The algorithm also computes
the specialized signature Σ′′ and restricts the set B′ to those axioms obeyed by the function
symbols in Σ′ ∩Σ′′. Finally, the rewrite theory R ′′ = (Σ′′,E ′′]B′′,R′′) is delivered as the final
outcome.

Note that, while the independent renaming suffices to rename the left-hand sides of the equa-
tions in E ′ (since they are mere instances of the specialized calls), the right-hand sides are re-
named by means of the auxiliary function RNρ , which recursively replaces each call in the given
expression by a call to the corresponding renamed function (according to ρ).

Also, observe that compression does not reduce the number of equations and rules of a
rewrite theory, it just replaces (possibly) textually-large expressions in equations and rules with
simpler ones that are obtained via the recursive renaming procedure. However, the effect of
compression is much more striking than a mere reduction of the program size. This is because
of two reasons. On the one hand, the set of axioms may be cut down whenever any operator that
is equipped with some axioms and does not occur in the partially evaluated equations is taken

13 Note that the function RNρ is actually non-deterministic since order-sorted anti-unification modulo
axioms is not unitary, in contrast to untyped syntactic anti-unification. Hence, multiple (equally "best")
renamings are possible for a term t under an independent renaming ρ . However, our implementation
deterministically selects one element of BFCB(t,Q), thereby producing just one renaming for t.

18

out from the theory E ′, as shown in Example 17. On the other hand, potential overlaps among
the specialized calls in the final set Q′ are removed by applying the independent renaming ρ ,
and so is any spurious non-determinism that might have been introduced by the specialization
process before compression. This is illustrated in the following example.

Example 10. Consider the equational definition

1 eq append(nil, L) = L [variant] .

2 eq append(X . L,L’) = X . append(L,L’) [variant] .

3 eq append(append(nil, nil), L) = L [variant] .

4 eq append(append(nil, X . L), L’) = X . append(L, L’) [variant] .

5 eq append(append(X . L, L’), L’’) = X . append(append(L, L’), L’’) [variant] .

that can be obtained by partially evaluating the well-know append function for list concatenation
w.r.t. the input call append(append(L1:List,L2:List),L3:List) that concatenates three
lists by applying the append function twice.

The first two equations in the specification above reproduce the original definition of the
append function where nil and _._ are the usual list constructors, while the remaining three
equations provide the intended specialization for the double append call. However, note that a
given term append(append(l1,l2),l3)) could be possibly narrowed by using equations 3,
4, and 5, but also using equations 1 and 2, which is certainly unintended, wastes the optimized
function and has more indeterminism than the original definition.

The compression phase is able to eliminate this extra, spurious non-determinism by produc-
ing the following independent set of renamed equations where double append applications can
now be reduced only by f1 equations:

eq f0(nil, L) = L [variant] .

eq f0(X . L,L’) = X . f0(L,L’) [variant] .

eq f1(nil, nil, L) = L~ [variant] .

eq f1(nil, X . L, L’) = X . f0(L, L’) [variant] .

eq f1(X . L, L’, L’’) = X . f1(L, L’, L’’) [variant] .

The following technical result holds for the specialization of the rewrite theories.

Theorem 1 (Preservation of executability conditions by NPERU
A(R)). Let R = (Σ,E]B,R)

be a topmost rewrite theory such that E = (Σ,E]B) and R is E -coherent. Let ~E = (Σ,B,~E) be
a decomposition of E , and let the left-hand sides of the rules in R be (~E,B)-strongly irreducible.
Let U be an unfolding operator and let A be an abstract operator. Given the set Q of the maxi-
mal calls in the normalized rules of R, let R ′ = (Σ′,E ′]B′,R′) =NPERU

A(R) be the specializa-
tion of R, with Q′ =EQNPEU

A((Σ,E]B),Q) and E ′ = (Σ′,E ′]B′) =GENTHEORY(Q′,(Σ,E]
B)) being the partial evaluation of E w.r.t Q. (under a given independent renaming ρ for Q′).

Then, ~E ′ = (Σ′,B′, ~E ′) is a decomposition of E ′, R′ is E ′-coherent, and the left-hand sides of
the rules in R′ are (~E ′,B′)-strongly irreducible.

Now we are ready to establish the strong correctness of our specialization algorithm.

Theorem 2 (Strong correctness of NPERU
A(R)). Let R = (Σ,E]B,R) be a topmost rewrite

theory such that E = (Σ,E]B) and R is E -coherent. Let ~E = (Σ,B,~E) be a decomposition
of E , and let the left-hand sides of the rules in R be (~E,B)-strongly irreducible. Let U be an
unfolding operator and let A be an abstract operator. Given the set Q of the maximal calls

19

in the normalized rules of R, let R ′ = (Σ′,E ′]B′,R′) =NPERU
A(R) be the specialization of

R, with Q′ =EQNPEU
A(E ,Q) and E ′ = (Σ′,E ′]B′) =GENTHEORY(Q′,(Σ,E]B)) being the

partial evaluation of E w.r.t Q. (under a given independent renaming ρ for Q′).
Let u ∈TΣ(X) be B-closed w.r.t. Q′ and Σ and u′ = RNρ(u) ∈TΣ′(X).

1. (u→∗
R,~E]B

v) if and only if (u′→∗
R′,~E ′]B′

v′), with v′ =B′ RNρ(v).

2. If E satisfies the FVP, then for any (~E,B)-irreducible computed substitution σ , (u ;∗
σ ,R,~E]B

v) if and only if (u′;∗
σ ′,R′,~E ′]B′

v′), with v′ =B′ RNρ(v) and σ ′ =B′ RNρ(σ).

Proofs of the (strong) correctness of the NPERU
A specialization algorithm and of the preser-

vation of the executability conditions of the specialized theories are given in Appendix A.

4 FV-narrowing for Specializing Rewrite Theories

Given a rewrite theory R = (Σ,E]B,R), with E = (Σ,B,~E) being a decomposition of (Σ,E]
B), the equational theory E in R may or may not meet the finite variant property (FVP). In this
section, we formalize the notion of finite variant property and the related narrowing strategy
that is called folded variant narrowing, which are the key ingredients to partially evaluate finite
variant as well as non-finite vartiant equational theories.

Intuitively, given an equational theory E = (Σ,E]B), the (~E,B)-variants (or simply vari-
ants) (tσ↓~E,B ,σ) of t are the “irreducible patterns” (tσ)↓~E,B to which t can be narrowed, with

computed substitution σ , by applying the oriented equations ~E modulo B. For instance, there
is an infinite number of variants for the term (0 + Y:Int) in the equation theory of Exam-
ple 3; e.g., (Y:Int, id), (0,{Y:Int 7→ 0}),(s(0),{Y:Int 7→ s(0)}), (s(Z:Int),{Y:Int 7→
s(Z:Int)}), (p(0),{Y:Int 7→ p(0)}), . . .

A preorder relation of generalization between variants provides a notion of most general
variant and also a notion of completeness of a set of variants. Formally, a variant (t,σ) is more
general than a variant (t ′,σ ′) w.r.t. an equational theory E (in symbols, (t,σ) ≤E (t ′,σ ′)) iff
t ≤E t ′ and σ ≤E σ ′. For instance, for the term 0+Y:Int, the most general variant is (Y : Int, id)
since any other variant can be obtained by equational instantiation.

Example 11. Consider the definition of the (associative and commutative) Boolean conjunction
operator ∧ given by E = {X ∧ true = X, X ∧false = false}, where variable X belongs to
sort Bool and constants true and false stand for the corresponding Boolean values. There are
five most general variants modulo associativity and commutativity for the term X∧Y, which are:
{(X∧Y,id),(Y,{X 7→ true}),(X,{Y 7→ true}),(false,{X 7→ false}),(false,{Y 7→ false})}.

An equational theory has the finite variant property (FVP) (or it is called a finite variant
theory) iff there is a finite and complete set of most general variants for each term. It is generally
undecidable whether an equational theory has the FVP [20]; a semi-decision procedure is given
in [39] (and implemented in [8]) that works well in practice. The procedure in [39] works by
computing the variants of all flat terms f (X1, . . . ,Xn) for any n-ary operator f in the theory and
pairwise-distinct variables X1, . . . ,Xn (of the corresponding sort); the theory does have the FVP
iff there is a finite number of most general variants for every such term.

For example, the theory of Example 11 satisfies the FVP since the flat term (X and Y) has
only five most general variants. In contrast, the equational theory of Example 1 does not have

20

the finite variant property; for instance, the term d(X,Y) has an infinite number of most general
variants (X, {Y 7→0}), (unshift(X), {Y 7→s(0)}), . . ., (unshiftk(X), {Y 7→ sk(0)}).

In [31], folding variant narrowing was proved to be complete, minimal, and finitary for
variant generation and variant E]B-unification w.r.t. (~E,B)-normalized substitutions, provided
that the theory has the FVP.

FV-narrowing derivations correspond to sequences t0 ;
σ0,~e0,B

t1 ;
σ1,~e1,B

. . .;
σn,~en−1,B

tn,
where t ;

σ ,~e,B t ′ (or simply t ;σ t ′ when no confusion can arise) denotes a transition (modulo
the axioms in B) from term t to t ′ via the variant equation e (i.e., an oriented equation ~e that
is enabled to be used for FV-narrowing thanks to the attribute variant) using the equational
unifier σ . The composition σ0σ1σn−1 of all the unifiers along a narrowing sequence leading to
tn (restricted to the variables of t0) is the computed substitution of this sequence. By notation
t ;

σ ,~E,B
t ′ (or also t ;~E,B

t ′), we denote a FV-narrowing step which is performed using some

oriented equation in ~E. Also, notation t ;n
σ ,~E,B

t ′ (or simply t ;n
~E,B

t ′) denotes a FV-narrowing
derivation of exactly n FV-narrowing steps. The set of all FV-narrowing computations for a
term t in E can be represented as a tree-like structure, denoted by VN	~E (t), which we call the
FV-narrowing tree of t in E .

Assuming that the initial term t is normalized, each (variant narrowing) step t ;
σ ,~e,B t ′ is

followed by the simplification of the term into its normal form by using all of the equations in
the theory, which may include not only the variant equations in the theory but also (non-variant)
equations (i.e., equations without the variant attribute). More precisely, given a rewrite theory
R = (Σ,E]G]B,R), where B is the axiom set, E is the set of variant equations, and G is the set
of non-variant equations, Maude does not perform narrowing with R modulo E]G]B, but only
modulo E]B, while equational simplification is carried out modulo the whole equational set
E]G]B. This gives a more flexible narrowing relation for rewrite rules, which is particularly
useful when only the equational theory fragment (Σ,E ∪B) has the FVP (while equations in G
would break it) so that variant E]B-unification is finitary, whereas variant E]G]B-unification
would be infinitary and undecidable. Therefore, in this scenario, each narrowing step with a
rewrite rule r of the form t ;

σ ,R,~E]B t ′ is followed by simplification using the rewrite relation
→!

~G]~E]B
, i.e., the combined relation (;

σ ,p,R,~E]B;→!
~G]~E,B) is defined as t ;

σ ,p,R,~E]B;→!
~G]~E,B t ′′

iff t ;
σ ,p,R,~E]B t ′, t ′→∗~G]~E,B t ′′, and t ′′ = t ′ ↓~G]~E,B.

An important number of verification tools and techniques rely on narrowing-based variant
generation: for example, protocol analyzers, proofs of coherence and local confluence, termina-
tion provers, variant-based satisfiability checkers, and different applications of symbolic reach-
ability analyses (references can be found in [8]).

5 Instantiating the Specialization Scheme for FVP and non-FVP Theories

Recall that the parameterized NPERU
A algorithm of Section 3.2 relies on two generic operators:

an unfolding operator U that defines the unfolding rule used to determine when and how to
terminate the construction of the narrowing trees; and an abstraction operator A that is used to
guarantee that the set of terms obtained during partial evaluation (i.e., the set of deployed nar-
rowing trees) is kept finite and progressively covers (modulo B) all of the specialized calls. The
instantiation of the scheme requires particularizing these two parameters in order to specify a
terminating, correct, and complete partial evaluation for E . We provide two different implemen-
tations for the unfolding operator U , namely, Ufvp and Ufvp. Both implementations exploit the

21

folding variant narrowing strategy outlined in Section 4. Furthermore, we will resort to a single
concrete definition of the abstraction operator A that works for both cases and is based on an
equational generalization algorithm.

5.1 Abstraction Operator via Least General Generalizations

In general, there is no guarantee that the leaves L of the FV-narrowing trees are B-closed w.r.t.
the specialized calls in Q. Indeed, the chosen unfolding operator U might deliver uncovered
function calls that should be subsequently considered for specialization, while avoiding the set
of partially evaluated calls from growing infinitely. In the following we introduce an abstraction
operator AElgg(Q,L ,B) that returns a set Q′ of specialized calls that abstracts the set Q∪L by
using the generalization process formalized in [6] that ensures that Q′ is B-closed w.r.t. Q∪L .

The abstraction operator AElgg(Q,L ,B) relies on an equational order sorted extension of
the pure, syntactical least general generalization algorithm [9] so that not too much precision
is lost despite the abstraction. Roughly speaking, the syntactic generalization problem for two
or more expressions, in a pure syntactic and untyped setting, means finding their least general
generalization (lgg), i.e., the least general expression t such that all of the given expressions
are instances of t under appropriate substitutions. For instance, the expression sibling(X,Y) is a
generalizer of both sibling(john,sam) and sibling(tom,sam), but their least general generalizer is
sibling(X,sam).

In [9], the notion of least general generalization is extended to the order-sorted modulo ax-
ioms setting, where function symbols can obey any combination of associativity, commutativity,
and identity axioms (including the empty set of such axioms). For instance, the least general
generalizer of sibling(sam,john) and sibling(tom,sam) is still sibling(X,sam), when sibling is a
commutative symbol. In general, there is no unique lgg in the framework of [9], due to both
the order-sortedness and to the equational axioms. Nonetheless, for the case of modular combi-
nations of associativity and commutativity axioms, there is always a finite, minimal, and com-
plete set of equational lggs (E-lggs) so that any other generalizer has at least one of them as a
B-instance. This result is fully extended in [14] to any modular combinations of associativity,
commutativity, and identity axioms.

Formally, given an order-sorted signature Σ and a set of algebraic axioms B, a generalization
modulo B of the nonempty set of terms {t1, . . . , tn} is a pair 〈t,Θ〉, where Θ = {θ1, . . . ,θn} is a
set of substitutions, such that, for all i = 1, . . . ,n, tθi =B ti. The pair 〈t,Θ〉 is the least general
generalization modulo B of a set of terms S, written lggB(S), if (1) 〈t,Θ〉 is a generalization of
S and (2) for every other generalization 〈t ′,Θ′〉 of S, t ′ is more general than t modulo B.

Let us introduce the notion of best matching set that is aimed at avoiding loss of special-
ization due to generalization. This notion is a proper, equational extension of [1] that we use to
select the more appropriate terms in a given set U that cover a new call t. Roughly speaking, we
determine the best matching set for t in a set U of terms w.r.t. B, BMSB(U, t), as follows: for
each ui in U , we compute the set Wi = lggB({ui, t}) and select the subset M of minimal upper
bounds of the union W =

⋃
i Wi. Then, the term uk belongs to BMSB(U, t) if at least one element

in the corresponding Wk belongs to M.
Let us introduce a simple motivating example, with B = /0.

Example 12. Let Q= { f (g(a)), f (g(b)), f (a)} and t = f (g(d(a,b))). To compute the best match-
ing set for t in Q, we first consider the set

22

W = lgg({ f (g(a)), f (g(d(a,b)))})∪ lgg({ f (g(b)), f (g(d(a,b)))})∪ lgg({ f (a), f (g(d(a,b)))})
= { f (g(x)), f (g(y)), f (z)}

Now, the minimally general elements of W are f (g(x)) and f (g(y)), and thus we have BMSB(Q, t)=
{ f (g(a)), f (g(b))}.

Definition 4 (Best Matching Set modulo B). Let E = (Σ,E]B) be an order-sorted equational
theory. Let U = {u1, . . . ,un} be a set of terms and t be a term. Given the decomposition (Σ,B,~E)
of (Σ,E]B), consider the sets of terms Wi = {w | 〈w,{θ1,θ2}〉∈ lggB({ui, t})}, for i = 1, ..,n,
and W =

⋃n
i=1 Wi. The best matching set BMSB(U, t) for t in U modulo B is the set of those terms

uk ∈U such that the corresponding Wk contains a minimally general element w of W under ≤B,
i.e., there is no different element w′ in W (modulo the relation 'B induced by ≤B) such that
w <B w′.

The following example illustrates the above definition.

Example 13. Let t = g(1)⊗1⊗g(Y), U ≡{1⊗g(X),X⊗g(1),X⊗Y}, and consider B to consist
of the associativity and commutativity axioms for the function symbol ⊗. To compute the best
matching set for t in U , we first compute the sets of lggB’s of t with each of the terms in U :

W1 = lggAC({g(1)⊗1⊗g(Y),1⊗g(X)}) = {〈Z⊗1,{{Z/g(1)⊗g(Y)},{Z/g(X)}}〉,
〈Z⊗g(W),{{Z/1⊗g(1),W/Y},{Z/1,W/X}}〉}

W2 = lggAC({g(1)⊗1⊗g(Y),X⊗g(1)}) = {〈Z⊗g(1),{{Z/1⊗g(Y)},{Z/X}}〉}
W3 = lggAC({g(1)⊗1⊗g(Y),X⊗Y)}) = {〈Z⊗W,{{Z/1,W/g(1)⊗g(Y)},{Z/X ,W/Y}}〉}

Now, the set M of minimal upper bounds of the set W1 ∪W2 ∪W3 is M = {〈Z⊗ 1,{{Z/g(1)⊗
g(Y)},{Z/g(X)}}〉,〈Z⊗g(1),{{Z/1⊗g(Y)},{Z/X}}〉} and thus we have: BMSAC(U, t)= {1⊗
g(X),X⊗g(1)}.

Now, we are ready to instantiate the abstraction parameter A of our specialization procedure
with the following function AElgg(Q,T,B) that relies on the notions of best matching set modulo
B and equational least general generalization. Given the current set Q of already specialized calls,
in order to augment Q with a new set T of terms, the best matching set is used when selecting the
most appropriate terms of Q to be used for generalizing T , in the sense of providing appropriate
least general generalizations.

Definition 5 (Abstraction operator). Let E = (Σ,E]B) be an order-sorted equational theory,
with Σ=D]Ω. Let U = {u1, . . . ,un} be a set of terms and t be a term. Given the decomposition
(Σ,B,~E) of (Σ,E]B), Let Q,T be two sets of terms. We define AElgg(Q,T,B) = absĔB(Q,T),
where:

absĔB(. . .absĔB(Q,{t1}), . . . ,{tn}) if T = {t1, . . . , tn},n > 1
Q if T = /0 or T = {X},with X ∈X

absĔB(Q,{t1, . . . , tn}) if T = {c(tn : sn)} and ∃c : sn→ s ∈ Σ s.t. c ∈Ω, ls(t) = s,n≥ 0
generalizeB(Q,Q′, t) if T = {t},otherwise

23

where Q′= {t ′ ∈Q | root(t)= root(t ′) and t ′EB t}. The function generalize is defined as follows:

generalizeB(Q, /0, t) = Q∪{t}
generalizeB(Q,Q′, t) = Q if t is B-closed w.r.t. Q and Σ

generalizeB(Q,Q′, t) = absĔB(Q\BMSB(Q′, t),Q′′↓~E,B) (otherwise)

where Q′′ = {l | q ∈ BMSB(Q′, t),〈w,{θ1,θ2}〉 ∈ lggB({q, t}),x ∈ Dom(θ1) ∪Dom(θ2), l ∈
{w,xθ1,xθ2}}.

It is worth noting that Definition 5 slightly generalizes the original formulation in [6] in order
to fully deal with subsort overloading (including the overloading of constructor symbols). The
new formalization of AElgg(Q,T,B) searches for the very specific constructor declaration that
matches the input term t, similarly to the extended notion of equational closedness of Definition
2; i.e., c : sn → s ∈ Σ, n ≥ 0, with c ∈Ω and ls(t) = s. The following example illustrates the
improved specialization power that we achieve by this extension.

Example 14. The Maude functional module OS-NAT/2 provides a specification of natural num-
bers modulo 2.

fmod OS-NAT/2 is

sorts Nat Zero One .

subsort Zero One < Nat .

op 0 : -> Zero [ctor] .

op s : Zero -> One [ctor] .

op s : Nat -> Nat .

eq s(s(0)) = 0 [variant] .

endfm

This module introduces two subsorts, namely, Zero and One, whose aim is to respectively type
the two values 0 and s(0). Furthermore, operator overloading is used to provide two versions of
the successor operator s so that for one typing is a constructor symbol and for another typing is
a defined symbol. More specifically, s : Zero→ One specifies a constructor symbol that builds
the canonical form s(0), while s : Nat→ Nat is a defined symbol that is used to simplify any
natural number sk(0), with k≥ 2, to either the value 0 or s(0) via the equation s(s(0)) = 0.

The term s(0) is constructor and matches the declaration op s : Zero -> One whereas
the term s(s(0)) is not and it matches the declaration of the defined symbol op s : Nat -> Nat.

Also, for Q= /0, L = {s(s(0))}, and axiom set B= /0, we have AElgg(Q,L ,B) = {s(s(0))}
since ls(s(s(0)))) = Nat. This allows the appropriate (defined) typing op s : Nat -> Nat

to be considered and the uncovered call s(s(0)) is added to Q.
On the contrary, our previous framework in [6] would have erroneously classified s(s(0))

as a constructor term and, as a result, the uncovered call s(s(0)) could not have been special-
ized.

Theorem 3. The operator AElgg(Q,L ,B) terminates and is an abstraction operator in the
sense of Definition 3.

5.2 Unfolding operators

Let us provide two possible implementations of the unfolding operator U that are respectively
able to deal with: (a) equational theories that do not satisfy the FVP; and (b) equational theories

24

that satisfy the FVP. Since (Σ,B,~E) is a decomposition of (Σ,E]B), both implementations adopt
the folding variant narrowing strategy to build the narrowing trees that are needed to specialize
the input theory.

(a) When E does not meet the finite variant property, folding variant narrowing may lead to the
creation of an infinite FV-narrowing tree for some specialized calls in Q. In this case, the
unfolding rule must implement a form of local control that stops the expansion of infinite
derivations in the FV-narrowing tree. A solution to this problem has already been provided in
[6] by means of an unfolding operator that computes a finite (possibly partial) FV-narrowing
tree fragment for every specialized call t in Q. Narrowing derivations in the tree are stopped
when no further FV-narrowing step can be performed or potential non-termination is de-
tected by applying a subsumption check at each FV-narrowing step. The subsumption check
is based on an equational order-sorted extension ĔB [7] of the classical homeomorphic em-
bedding relation E that is commonly used to ensure termination of symbolic methods and
program optimization techniques.
Roughly speaking, a homeomorphic embedding relation is a structural preorder under which
a term t is greater than (i.e., it embeds) another term t ′, written as t . t ′, if t ′ can be obtained
from t by deleting some parts, e.g., s(s(X +Y)∗(s(X)+Y)) embeds s(Y ∗(X +Y))). Embed-
ding relations have become very popular to ensure termination of symbolic transformations
because, provided the signature is finite, for every infinite sequence of terms t1, t2, . . . , there
exists i < j such that ti E t j. In other words, the embedding relation is a well-quasi order
(wqo) [35]. Therefore, when iteratively computing a sequence t1, t2, . . . , tn, finiteness of the
sequence can be guaranteed by using the embedding as a whistle: whenever a new expres-
sion tn+1 is to be added to the sequence, we first check whether tn+1 embeds any of the
expressions already in the sequence. If that is the case, we say thatE whistles, i.e., it has de-
tected (potential) non-termination and the computation has to be stopped in tn+1. Otherwise,
tn+1 is added to the sequence and the computation can proceed.
The Ufvp(Q, ~E) operator implements an unfolding rule that is based on the homeomorphic
relation ĔB, whose full formalization relies on the following auxiliary notion.
We say that a FV-narrowing derivation D is admissible w.r.t. ĔB if and only if it does not
contain a pair of comparable narrowing redexes (i.e., rooted by the same operation symbol)
s and t, where s precedes t in D, such that sĔBt.

Example 15. Consider the equational theory E = (Σ,E]B) that encodes the Caesar cipher
of Example 1 and the input term dec(M:Message,s(0)) that represents the decryption
of a generic message M w.r.t. the key s(0). Then, we have the following FV-narrowing
derivations for dec(M:Message,s(0)) in E :

dec(M : Message,s(0));
σ ′,~E,B toSym(unshift(toNat(M′ : Symbol)));

σ ′′,Ẽ,B
a

with σ ′ = {M : Message/M′ : Symbol} and σ ′′ = {M′/b}.

dec(M : Message,s(0));
σ ′′,~E,BtoSym(unshift(toNat(S

′ : Symbol))) dec(M′ : Message,s(0))

with σ ′′ = {M : Message/(S′ : Symbol M′ : Message)}. While the former is an admissible deriva-
tions, the latter is not, since there exists the trivial embedding dec(M:Message,s(0)) ĔB
dec(M’:Message, s(0)).

25

Definition 6 (Unfolding function). Given the equational theory E = (Σ,E]B) with a de-
composition ~E = (Σ,B,~E), and a term t0 to be specialized in E , we define Unfold(t0,~E) as
the set of terms given by

UnfoldĔB(t0, ~E) = {tn | t0 ;n
~E,B

tn ∈ VN	~E (t0),

t0 ;n−1
~E,B

tn−1 is admissible w.r.t. ĔB and
either @w : t0 ;n

~E,B
tn ;~E,B

w ∈ VN	~E (t0)
or t0 ;n

~E,B
tn is not admissible w.r.t. ĔB.}

Given a set Q of terms, we also define Ufvp(Q, ~E) =
⋃

t∈Q UnfoldĔB(t,R).

Note that Ufvp(Q, ~E) of Definition 6 computes a finite (possibly partial) folding variant

narrowing tree in ~E for each term t in Q and returns the set of the (normalized) leaves of
the trees. Derivations are stopped when there is no further folding variant narrowing steps
or the embedding whistle blows.

Example 16. Consider a specific instance of the rewrite theory of Example 1, where servers
and clients use a pre-shared fixed key; for simplicity, assume K=s(s(0)). Let R = (Σ,E]
B,R) be such a rewrite theory, where E = (Σ,E] B) is the equational theory of R. In
E , the FV-narrowing trees associated with encryption and decryption functionality may
be infinite since E does not have the FVP, as shown in Section 4. For instance, terms of
the form (t1 . . . tn enc(M

′,s(s(0)))) derive from enc(M,s(s(0)) by FV-narrowing, where
enc(M′,s(s(0))) can be further narrowed to unravel an unlimited sequence of identical terms
modulo renaming. Nonetheless, homeomorphic embedding detects this non-terminating be-
havior since enc(M′,s(s(0)) embeds enc(M,s(s(0)).
By using the unfolding operator U f vp, the first phase of the NPERU

A (R) algorithm, with
U = U f vp and A = AElgg, computes the initial set Q= {enc(M,s(s(0)),dec(M,s(s(0))}
consisting of the (normalized) maximal function calls of R. Then, the equational theory E
is partially evaluated w.r.t. Q by EQNPEU

A , using the tandem U f vp/AElgg. During the partial
evaluation process, U f vp only unravels finite fragments of the FV-narrowing trees that are
rooted by the specialized calls, thereby yielding the partial evaluation E ′ of E in Figure 3.
After the second phase of the algorithm, Presto produces the compressed equational theory
E ′′ of Figure 4 by computing the following renaming for the specialized calls:

dec(M : Message,s(s(0))) 7→ f0(M : Message)
enc(M : Message,s(s(0))) 7→ f1(M : Message)
toSym(unshift(unshift(toNat(X : Symbol)))) 7→ f3(X : Symbol)
toSym([[toNat(X : Symbol)< s(s(0)),s(toNat(X : Symbol)),0]< s(s(0)),

s([toNat(X : Symbol)< s(s(0)),s(toNat(X : Symbol)),0]),0]) 7→ f2(X : Symbol)

which eliminates prolix nested calls and redundant arguments in E ′′ computations.
It is worth noting that the resulting specialization E ′′ provides a highly optimized version
of E for an arbitrarily fixed key K=s(s(0)), where both functional and structural compres-
sion are achieved. Specifically, data structures in E for natural numbers and their associated
operations for message encryption and decryption are totally removed from E ′′. Note that
the _+_ operator, together with its associative and commutative axioms, disappears from
E ′′, thereby avoiding expensive matching operations modulo axioms. This transformation

26

eq dec(a,s(s(0))) = b [variant] . eq dec(b,s(s(0))) = c [variant] .

eq dec(c,s(s(0))) = a [variant] .

eq dec(S:Symbol M:Message,s(s(0))) = toSym(unshift(unshift(toNat(S:Symbol))))

dec(M:Message,s(s(0))) [variant] .

eq enc(a,s(s(0))) = c [variant] .

eq enc(b,s(s(0))) = a [variant] .

eq enc(c,s(s(0))) = b [variant] .

eq enc(S:Symbol M:Message, s(s(0))) =

toSym([[toNat(S:Symbol) < s(s(0)),s(toNat(S:Symbol)),0] < s(s(0)),

s([toNat(S:Symbol)<s(s(0)),s(toNat(S:Symbol)),0]),0])

enc(M:Message,s(s(0))) [variant] .

eq toSym([[toNat(a) < s(s(0)),s(toNat(a)),0] <

s(s(0)),s([toNat(a) < s(s(0)),s(toNat(a)),0]),0]) = c [variant] .

eq toSym([[toNat(b) < s(s(0)),s(toNat(b)),0] <

s(s(0)),s([toNat(b) < s(s(0)),s(toNat(b)),0]),0]) = a [variant] .

eq toSym([[toNat(c) < s(s(0)),s(toNat(c)),0] <

s(s(0)),s([toNat(c) < s(s(0)),s(toNat(c)),0]),0]) = b [variant] .

eq toSym(unshift(unshift(toNat(a)))) = b [variant] .

eq toSym(unshift(unshift(toNat(b)))) = c [variant] .

eq toSym(unshift(unshift(toNat(c)))) = a [variant] .

Fig. 3. Specialization algorithm, Phase 1: Partial evaluation of E w.r.t. Q.

power cannot be achieved by existing, functional, logic or functional logic partial evalua-
tors. Encryption (resp., decryption) in E ′′ is now the direct mapping f0 (resp., f1) that as-
sociates messages to their corresponding encrypted (resp. decrypted) counterparts, avoiding
a huge amount of computation in the profuse domain of natural numbers. Finally, the com-

eq f0(a) = b [variant] . eq f0(b) = c [variant] . eq f0(c) = a [variant] .

eq f2(a) = c [variant] . eq f2(b) = a [variant] . eq f2(c) = b [variant] .

eq f1(a) = c [variant] . eq f1(b) = a [variant] . eq f1(c) = b [variant] .

eq f3(a) = b [variant] . eq f3(b) = c [variant] . eq f3(c) = a [variant] .

eq f0(S:Symbol M:Message) = f3(S:Symbol) f0(M:Message) [variant] .

eq f1(S:Symbol M:Message) = f2(S:Symbol) f1(M:Message) [variant] .

Fig. 4. Specialization algorithm, Phase 2: Compressed theory E ′′.

puted renaming is also applied to R by respectively replacing the maximal function calls
enc(M,s(s(0)) and dec(M,s(s(0)) with f0(M) and f1(M) into the rewrite rules of R.
This allows the (renamed) rewrite rules to be able to access the new specialized encryption
and decryption functionality provided by E ′′.

Example 1 shows that a high degree of simplification can be achieved by the specialization
technique of Presto for theories that do not have the FVP. Furthermore, in many cases, the
specialization algorithm is also able to transform an equational theory that does not meet

27

the FVP into a specialized one that does. This typically happens when the function calls to
be specialized can only be unfolded a finite number of times. Let us see an example.

Example 17. Consider a slight variant of the protocol theory of Example 16 in which mes-
sages consist of one single symbol instead of arbitrarily long sequences of symbols. This
variant can be obtained by simply modifying the sort of the messages from Message to
Symbol in the protocol rewrite rules. In this scenario, the set of maximal function calls
becomes Q={enc(S,s(s(0))↓~E,B,dec(S,s(s(0)↓~E,B)}, where S is a variable of sort
Symbol. Note that the calls in Q subsume a finite number of more specific calls that cor-
respond to the encryption and decryption of the symbols a, b and c w.r.t. the key s(s(0)).
The rewrite theory can be automatically specialized by Presto for this use case by using
NPERU

A (R), instantiated with U =U f vp and A =AElgg. The final outcome produced is a
specialized rewrite theory R ′ whose underlying, transformed equational theory is shown in
Figure 5. This theory clearly meets the FVP since it specifies four non-recursive functions
that all work over the finite domain {a,b,c}. Additionally, the obtained specialization gets
rid of the associative data structure needed to build messages of arbitrary size since only
one-symbol messages are allowed in the specialized program.

eq f0(M:Symbol) = f3(M:Symbol) [variant] .

eq f1(Q:Symbol) = f2(Q:Symbol) [variant] .

eq f2(a) = c [variant] . eq f2(b) = a [variant] . eq f2(c) = b [variant] .

eq f3(c) = a [variant] . eq f3(a) = b [variant] . eq f3(b) = c [variant] .

Fig. 5. Equations of the specialized equational theory for one-symbol messages and key K=s(s(0)).

Finally, note that the satisfaction of the FVP allows narrowing-based reachability problems
to be effectively solved within the specialized rewrite theory, while they were unfeasible in
the original rewrite theory.14 For instance, the following reachability goal succeeds, proving
that it is possible to establish a successful communication from an initial state in which
client Cli-A sends a request containing the crypted message c to server Srv-A
< [Cli-A,Srv-A,Q,K,mt] & [Srv-A,K] & (Srv-A <- {Cli-A,c}) > =>*

< [Srv-A,K] & [Cli-A,Srv-A,Q,K,success] >

Also the computed substitution {K/s(s(0)),Q/a} provides the required key K and the
plain message Q that the server sends back to the client.

(b) When the equational theory E does satisfy the FVP, FV-narrowing trees are always finite
objects that can be effectively constructed in finite time. Therefore, in this specific case, we
define the following unfolding operator that constructs the complete FV-narrowing tree for
any possible call.

Definition 7. Given the equational theory E =(Σ,E]B) with a decomposition ~E =(Σ,B,~E),
and a set of terms Q to be specialized in E ,then

Ufvp(Q, ~E) =
⋃
t∈Q

{t ′ | t ;!
~E,B

t ′ ∈ VN	~E (t)}

14 Reachability goals can be solved by the Maude built-in vu-narrow command.

28

where t ;!
~E,B

t ′ denotes a FV-narrowing derivation from t to the term t ′ to which no FV-
narrowing steps can be applied.

Note that, when an equational theory has the FVP, both unfolding operators Ufvp and Ufvp
can be used to specialize a rewrite theory. Nonetheless, the advantage of using Ufvp instead
of Ufvp is twofold. First, Ufvp disregards any embedding check, which can be extremely
time-consuming when E includes several operators that obey complex modular combina-
tions of algebraic axioms.15 Second, Ufvp exhaustively explores the whole FV-narrowing
tree of a term, while Ufvp does not. This leads to a lower degree of specialization when Ufvp
is applied to a finite variant theory, as shown in the following (pathological) example.

Example 18. Consider the equational theory that is encoded by the following Maude func-
tional module:

fmod MKEVEN is sort Nat .

ops 0 1 : -> Nat [ctor] . op mkEven : Nat Nat -> Nat .

op_+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

vars X Y : Nat .

eq mkEven(X + X + 1,1 + Y) = mkEven(X + X + 1 + 1,Y) [variant] .

eq mkEven(X + X,0) = X + X [variant] .

endfm

The equational theory specifies the encoding for natural numbers in Presburger’s style16 and
uses this encoding to define the function mkEven(X,Y) that makes X even (if X is odd) by
“moving” one unit from Y to X. Otherwise, if X is even, X is left unchanged. The partial
evaluation of the given theory w.r.t. the call mkEven(X,Y) yields different outcomes that
depend on the chosen unfolding operator. On the one hand, by using Ufvp, the output is the
very same input theory, thus no “real” specialization is achieved. On the other hand, the
unfolding operator Ufvp produces the specialized definition of mkEven given by

eq mkEven(X + X,0) = X + X [variant] .

eq mkEven(1 + X + X, 1) = 1 + 1 + X + X [variant] .

where the second equation is generated by fully exploring the FV-narrowing derivation

mkEven(Z,W);{Z/X+X+1,W/1+Y} mkEven(1 + 1 + X + X,Y);{Y/0} 1 + 1 + X + X

where t ;σ t denotes a FV-narrowing step from t to t ′ with substitution σ . In contrast,
Ufvp stops the sequence at mkEven(1 + 1 + X + X, Y) since mkEven(1 + 1 + X + X, Y)

embeds mkEven(Z,W) and hence yields a specialized equation that is equal (modulo as-
sociativity and commutativity of +) to the original equation mkEven(X + X + 1,1 + Y) =

mkEven(X + X + 1 + 1,Y).

Termination of the symbolic specialization Algorithm NPERU
A(R) for finite variant the-

ories and non-finite variant theories follows from the global termination of the EQNPEU
A(E)

algorithm proved in [6] for the unfolding function Ufvp(Q, ~E) and the equational least general

abstraction function AElgg(Q,L ,B), and from the local termination of Ufvp(Q, ~E).

15 Actually, given an AC operator ◦, if we want to check whether a term t = t1 ◦ t2 . . . ◦ ti is embedded
into another term with a similar form, all possible permutations of the elements of both terms must be
non-deterministically tried.

16 Using this encoding, a natural number can be the constant 0 or a sequence of the form 1 + 1 ... +

1.

29

Theorem 4 (Termination of NPERU
A(R)). Let R = (Σ,E]B,R) be a rewrite theory such that

E = (Σ,E]B), and ~E = (Σ,B,~E) is a decomposition of E . Let U be an unfolding operator
and let A be an abstract operator. Algorithm NPERU

A(R) terminates when E satisfies the FVP
(respectively, E does not satisfy the FVP) with the tandem Ufvp/AElgg (respectively, the tandem
Ufvp/AElgg).

6 Experimental Evaluation

Table 1 contains the experiments that we have performed with the Presto system [47], which is
a prototype implementation of the proposed specialization framework for rewrite theories. The
experimental evaluation has been conducted on an Intel Xeon E5-1660 3.3GHz CPU with 64
GB RAM running Maude v3.1

We have considered the following benchmark programs: Crypto Protocol, a variant of the
client server communication protocol of Example 1 where we introduce extra functions (e.g.,
the Fibonacci function and the mod function that computes the remainder of the division be-
tween natural numbers) in the underlying equational theory to make key generation heavier;
FM-Account, a rewrite theory that specifies a bank account system with managed accounts
which automates a simple investment model; tkEven, a simple rewrite theory that tuples a couple
of calls to the mkEven function of Example 18; Handshake-KMP, a handshake network proto-
col in which a client sends an arbitrary long and noisy message M to a server. The handshake
succeeds if the server can recognize a secret handshake sequence P inside the client message
M by matching P against M via the well-known KMP string matching algorithm. These experi-
ments plus several others are also publicly available at Presto’s website. For each experiment,
we publish the source code of all of the examples to make the experiments easily reproducible.
In many cases, we transform a rewrite theory whose operators obey algebraic axioms, such as
associativity, commutativity, and unity, into a much simpler rewrite theory with no structural
axioms.

The experiments have been divided into two classes. The first class, which is identified by the
Rewriting section in Table 1, aims at measuring the speedup of the obtained specialization w.r.t.
the rewriting evaluation mechanism; the second class corresponds to the Narrowing section in
Table 1 and measures the speedup w.r.t. narrowing computations. Column RlsR /EqsR (resp.
RlsR′ /EqsR′) shows the size of the original (resp. specialized) theories measured as the number
of rules and equations they contain. We do not benchmark the specialization times since they are
almost negligible (<100 ms for most cases).

To evaluate rewriting performance, we considered rewrite sequences of increasing sizes that
range from 1 million to 10 million rewrite steps. Column Rewrites in Table 1 indicates the
number of rewrites for each benchmark program and experiment.

For each rewriting experiment, we executed the original specification R and the specialized
R ′ on the very same input states. Specialization was performed according to the nature of each
benchmark program. Therefore, programs that do not meet the FVP have been specialized us-
ing the unfolding operator Ufvp, while programs that include a finite variant theory have been
specialized using the Ufvp operator. We recorded the following experimental data: the execution
times (in ms) for R (Column T→R) and for R ′ (Column T→R′), and the speedup that is computed
as the ratio T→R /T→R′ (Column Speedup→). To reduce the noise, we considered the average time
of ten runs for each experiment.

Regarding rewriting times, our figures show that the specialized rewrite theories achieve a
significant improvement when compared to the original theory, with an average speedup for

30

Program Size Rewriting Narrowing
RlsR /EqsR RlsR ′ /EqsR ′ Rewrites T→R (ms) T→R ′ (ms) Speedup→ Levels T;

R (ms) T;
R ′ (ms) Speedup;

1M 45,869 953 48.13 50 31,587 3,926 8.05
2.5M 104,295 2,324 44.88 75 100,124 11,767 8.51

Crypto Protocol 3/31 3/6 5M 207,558 4,924 42.15 100 227,459 25,236 9.01
7.5M 311,016 7,647 40.67 125 426,466 47,388 9.00
10M 420,795 9,434 44.60 150 730,430 79,738 9.16
1M 87,362 576 151.67 2 7 4 1.75

2.5M 209,143 1,408 148.54 4 49 28 1.75
Handshake-KMP 2/14 2/0 5M 416,655 2,875 144.92 6 313 180 1.74

7.5M 642,196 5,181 123.95 8 1,672 948 1.76
10M 806,152 6,701 120.30 10 8,008 4,513 1.77
1M 14,512 282 51.46 1 1 1 1.00

2.5M 36,430 649 56.13 2 13 4 3.25
FM-Account 3/11 3/2 5M 73,548 1,297 56.71 3 158 16 9.88

7.5M 108,195 1,977 54.73 4 1,957 49 39.94
10M 142,475 2,595 54.90 5 35,834 145 247.13
1M 1,752 383 4.57 5 460 20 23.00

2.5M 4,276 886 4.83 10 6,129 80 76.61
tkEven 1/8 1/8 5M 8,961 1,907 4.70 15 38,675 183 211.34

7.5M 13,779 3,044 4.53 20 153,273 337 454.82
10M 17,612 3,915 4.50 25 492,588 603 816.90

Table 1. Rewriting and narrowing experimental results in Presto.

these benchmarks of 60.34. In other words, the specialized program is, on average, more than
60 times faster than the original program on the considered inputs. Particularly remarkable is
the performance improvement of the Handshake-KMP, which reaches two orders of magnitude
for the case when the specialized maximal calls within the rewrite theory partially instantiate
the input pattern and input message. This is basically due to the huge simplification that is
achieved by Presto by specializing the KMP string matching function. The smallest speedup
for rewriting executions is obtained by tkEven. In this case, we specialize the very general call
tkEven(X:Nat,Y:Nat), which offers less opportunities for optimization since no argument in
tkEven has been sufficiently instantiated.

For the narrowing experiments, we considered a narrowing-based reachability goal for each
benchmark program, which has been used to search for solutions in a narrowing tree fragment of
an increasing number of levels from 1 to 150 levels. This means that our experiments consider
huge search spaces that consist of complete narrowing trees of depth up to 150 levels. It is worth
recalling that narrowing-based reachability goals cannot be solved in those Maude programs
with an equational theory E that does not meet the FVP since E -unification may not terminate.
Thus, to be able to execute narrowing-based reachability goals in any benchmark programs
R = (Σ,E]B,R) regardless of their FVP behavior, we only performed narrowing steps with R
modulo E ′]B, where E ′ = (Σ,E ′]B) is the maximal FVP-fragment of the equational theory
(Σ,E]B) included in R. The rest of the equations (E \E ′) are only used for normalization as
described in Section 4.

In this case, we recorded the search time in the corresponding narrowing tree fragment for the
original program (Column T;

R) as well as for the specialized program (Column T;
R′), together

with the achieved speedup (Column Speedup;). In all narrowing experiments, the specialized
program outperforms the original one by greatly reducing the time required to solve the con-
sidered narrowing-based reachability goals. The average speedup is 96.82. For some example
programs, we note that the speedup for narrowing exponentially grows with the size of the nar-
rowing tree. In particular, this happens for programs FM-Account and tkEven where the obtained

31

specializations greatly reduce the branching factor of the narrowing trees (both at the level of
rules and equations) associated with the considered reachability goals, thereby enabling a faster
exploration of the search space in the specialized programs that is more noticeable the larger the
size of the trees. This means that some costly analyses that might require inordinate resources,
both in time and space, could be effectively performed after the transformation. For the case
of Handshake-KMP, the performance gain that is obtained for narrowing with specialized rules
and equations is much lower than for equational rewriting computations. This is actually ex-
pected, since in order to select the maximal FVP-fragment of the KMP equational theory (so
that we can run the three-level narrowing modulo equations and axioms mechanism), we must
remove the variant attribute from most of the KMP equations, which dramatically reduces the
opportunities for optimizing the narrowing computations.

The original EqNPE framework of [6] was implemented in our earlier partial evaluator Victo-
ria. Since Victoria cannot handle rewrite theories but only equational theories, the specialization
of rewrite theories supported by Presto could not be previously achieved unless a complex hack
is introduced not only at the level of the theory signature but also by providing a suitable pro-
gram infrastructure that simulates rewrite rule nondeterminism through equations. For the case
when we simply specialize an equational theory, both systems perform similarly. For instance,
we benchmarked the total specialization time for a loop consisting of 1000 specializations of the
KMP program that is classically used to compare program specializers, and then we divided the
accumulated specialization time by 1000. This modus operandi allowed the noise on the small
time for a single specialization to be reduced. The resulting specialization times of Victoria and
Presto are comparable (6.6 ms and 5.6 ms, respectively). This is noteworthy since the imple-
mentation of Presto is considerably more ambitious and it provides much greater coverage of
the Maude language compared to the simpler approach of Victoria.

Presto includes a FVP checker for equational theories that is based on the checking proce-
dure described in [39]. It also implements a strong irreducibility checker that determines whether
there is any redex within the left-hand sides of the rewrite rules (w.r.t. the hosted equational the-
ory).

7 Related work and Conclusion

The generic specialization framework proposed in this work represents our most ambitious auto-
mated optimization scheme for rewrite theories. To efficiently achieve aggressive specialization
that scales to real-world problems, the key components of the EQNPE scheme needed to be thor-
oughly investigated, extended, and highly optimized over the years. This is because equational
problems such as order-sorted equational homeomorphic embedding and order-sorted equational
least general anti-unification are much more costly than their corresponding “syntactic” coun-
terparts and achieving proper formalizations and efficient implementations has required years
[12, 13, 9, 10, 4, 6, 14].

Our specialization technique can have a decisive impact on the symbolic analysis of concur-
rent systems that are modeled as rewrite theories in Maude. The main reason why our technique
is so effective in this area is that it not only achieves huge speedup for relevant classes of rewrite
theories, but it can also cut down an infinite folding variant narrowing space to a finite one for
the underlying equational theory E . By doing this, any E -unification problem can be finitely
solved, and symbolic, narrowing-based analysis with R modulo E can be effectively performed.

Among the wide literature on logic program specialization, the partial evaluation of func-
tional logic programs [17, 2, 33] is the closest to our work. The narrowing-driven Partial Eval-

32

uation (NPE) algorithm of [17] extends to narrowing the classical PD scheme of [37] and was
proved to be strictly more powerful than the PE of both logic programs and functional programs
[17], with a potential for specialization that is comparable to conjunctive partial deduction (CPD)
and positive supercompilation [25]. Early instances of this framework implemented partial eval-
uation algorithms for different narrowing strategies, including lazy narrowing [15], innermost
narrowing [17], and needed narrowing [3, 18].

NPE was extended in [6] to the specialization of order-sorted equational theories and im-
plemented in the partial evaluator for equational theories Victoria. For a detailed discussion of
the literature related to narrowing-driven partial evaluation, we refer to [6].

A narrowing-based partial evaluator for the lazy functional logic language Curry is described
in [33, 46]. Its implementation can be seen as an instance of the generic narrowing-based par-
tial evaluation framework of [17]. This system improves the former prototype of [2] by taking
into account (mutually recursive) let expressions and non-deterministic operations, while the PE
system of [2] was restricted to confluent programs. Obviously, the protocol benchmarks in this
paper cannot be directly specialized by using Curry’s partial evaluator since neither evaluation
modulo algebraic axioms nor concurrency are supported by Curry’s partial evaluator; this would
require artificially rewriting the program code so that any comparison would be meaningless. In
the opposite direction, Presto cannot manage the specialization of higher-order functions that is
achieved by [33].

Our specialization technique falls into the category of the semantic-preserving program
transformations. There are very few semantic-preserving transformations for rewrite theories
in the related literature. An important example is explicit coherence completion [52] between
rules, equations and axioms, which is necessary for symbolic execution in rewrite theories and
relies on semantically-equivalent theory transformations [41]. Also the semantic K-framework
[48] and the model transformations of [49] are based on sophisticated program transformations
and both preserve the reduction semantics of the original theory. Nonetheless, they do not aim to
program optimization. Furthermore, Maude tools usually rely on weaker theory transformations
that preserve only specific properties such as invariants or termination behavior (Full-Maude
[22], Real-time Maude [45], MTT [27], and Maude-NPA [28] are prominent examples). Other
transformations focus on reducing the size of the search space; for instance, equational abstrac-
tion [42, 19] reduces an infinite state system to a finite quotient of the original system algebra
by introducing some extra equations that preserve certain temporal logic properties.

Finally, we would like to discuss the limitations of the current specialization framework (and
its associated implementation) along with possible lines of future work. Although a wide class
of Maude rewrite theories can be already partially evaluated, there are still some Maude features
that cannot be handled by Presto.

First, there is no support for user-defined rewrite strategies and object-oriented program-
ming. Since these are important Maude features, as future work we plan to investigate possible
extensions of the framework that can deal with them.

Second, rewriting logic is parameterized by an equational logic that, in the case of Maude,
is membership equational logic (MEL). MEL allows sorts of terms to be asserted through suit-
able (conditional) membership axioms. Nonetheless, our specialization technique only handles
order-sorted equational logic which is strictly less expressive than MEL. This is because the
computation of term variants is currently formulated and implemented in Maude only for order-
sorted specifications. Hence, the extension of our partial evaluation framework to deal with MEL
specifications is far from trivial since it requires to extend both folding variant narrowing and
variant computation to MEL specifications.

33

Third, we plan to generalize our specialization scheme so that it can cope with rewrite the-
ories that are not strongly irreducible. Strong irreducibility is a reasonable requirement that is
much more practical and less demanding than a constructor discipline forbidding that arguments
of the left-hand side of rules contain any defined symbols. Nonetheless, we do believe that more
relaxed conditions can be found to specialize rewrite theories without jeopardizing correctness
of the specialization.

34

Bibliography

[1] E. Albert, M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Improving Control in Func-
tional Logic Program Specialization. In Proceedings of the 5th International Symposium
on Static Analysis (SAS 1998), volume 1503 of Lecture Notes in Computer Science, pages
262–277. Springer, 1998.

[2] E. Albert, M. Hanus, and G. Vidal. A Practical Partial Evaluation Scheme for Multi-
Paradigm Declarative Languages. Journal of Functional and Logic Programming, 2002:1–
34, 2002.

[3] Elvira Albert, María Alpuente, Michael Hanus, and Germán Vidal. A Partial Evaluation
Framework for Curry Programs. In Harald Ganzinger, David A. McAllester, and Andrei
Voronkov, editors, Logic Programming and Automated Reasoning, 6th International Con-
ference, LPAR’99, Tbilisi, Georgia, September 6-10, 1999, Proceedings, volume 1705 of
Lecture Notes in Computer Science, pages 376–395. Springer, 1999.

[4] M. Alpuente, D. Ballis, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. ACUOS2: A
High-Performance System for Modular ACU Generalization with Subtyping and Inher-
itance. In Proceedings of the 16th European Conference on Logics in Artificial Intelli-
gence (JELIA 2019), volume 11468 of Lecture Notes in Computer Science, pages 171–181.
Springer, 2019.

[5] M. Alpuente, D. Ballis, S. Escobar, and J. Sapiña. Narrowing-based Optimization of
Rewrite Theories. In Proceedings of the 7th International Workshop on Rewriting Tech-
niques for Program Transformations and Evaluation (WPTE 2020), 2020. Extended
version in Tech. Report DSIC-UPV, 2020. Available at: http://elp.webs.upv.es/

papers/ABES20-TR.pdf.
[6] M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. A Partial Evaluation Frame-

work for Order-Sorted Equational Programs modulo Axioms. Journal of Logical and Al-
gebraic Methods in Programming, 110:1–36, 2020.

[7] M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Order-sorted Homeomor-
phic Embedding modulo Combinations of Associativity and/or Commutativity Axioms.
Fundamenta Informaticae, 177(3-4):297–329, 2020.

[8] M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Sapiña. Inspecting Maude Variants
with GLINTS. Theory and Practice of Logic Programming, 17(5–6):689–707, 2017.

[9] M. Alpuente, S. Escobar, J. Espert, and J. Meseguer. A Modular Order-Sorted Equational
Generalization Algorithm. Information and Computation, 235:98–136, 2014.

[10] M. Alpuente, S. Escobar, J. Espert, and J. Meseguer. ACUOS: A System for Modular ACU
Generalization with Subtyping and Inheritance. In Proceedings of the 14th European Con-
ference on Logics in Artificial Intelligence (JELIA 2014), volume 8761 of Lecture Notes in
Computer Science, pages 573–581. Springer, 2014.

[11] M. Alpuente, S. Escobar, and J. Iborra. Termination of Narrowing Revisited. Theoretical
Computer Science, 410(46):4608–4625, 2009.

[12] M. Alpuente, S. Escobar, J. Meseguer, and P. Ojeda. A Modular Equational Generalization
Algorithm. In Proceedings of the 18th International Symposium on Logic-Based Program
Synthesis and Transformation (LOPSTR 2008), volume 5438 of Lecture Notes in Computer
Science, pages 24–39. Springer, 2008.

[13] M. Alpuente, S. Escobar, J. Meseguer, and P. Ojeda. Order-Sorted Generalization. Elec-
tronic Notes in Theoretical Computer Science, 246:27–38, 2009.

[14] M. Alpuente, S. Escobar, J. Meseguer, and J. Sapiña. Order-sorted Equational Generaliza-
tion Algorithm Revisited, 2021. Submitted for publication. Available at: elp.webs.upv.
es/papers/elgg-rev.pdf.

[15] M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Specialization of Lazy Functional Logic
Programs. In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM 1997), pages 151–162. Association for
Computing Machinery, 1997.

[16] M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Safe Folding/Unfolding with Condi-
tional Narrowing. In Proceedings of the 6th International Joint Conference on Algebraic
and Logic Programming (ALP 1997), volume 1298 of Lecture Notes in Computer Science,
pages 1–15. Springer, 1997.

[17] M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic Programs.
ACM Transactions on Programming Languages and Systems, 20(4):768–844, 1998.

[18] M. Alpuente, S. Lucas, M. Hanus, and G. Vidal. Specialization of Functional Logic Pro-
grams based on Needed Narrowing. Theory and Practice of Logic Programming, 5(3):273–
303, 2005.

[19] K. Bae, S. Escobar, and J. Meseguer. Abstract Logical Model Checking of Infinite-State
Systems Using Narrowing. In Proceedings of the 24th International Conference on Rewrit-
ing Techniques and Applications (RTA 2013), volume 21 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 81–96. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2013.

[20] C. Bouchard, K. A. Gero, C. Lynch, and P. Narendran. On Forward Closure and the Finite
Variant Property. In Proceedings of the 9th International Symposium on Frontiers of Com-
bining Systems (FroCos 2013), volume 8152 of Lecture Notes in Computer Science, pages
327–342. Springer, 2013.

[21] R. M. Burstall and J. Darlington. A Transformation System for Developing Recursive
Programs. Journal of the ACM, 24(1):44–67, 1977.

[22] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-Oliet, J. Meseguer, R. Rubio,
and C. Talcott. Maude Manual (Version 3.0). Technical report, SRI International Computer
Science Laboratory, 2020. Available at: http://maude.cs.uiuc.edu.

[23] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott. All
About Maude: A High-Performance Logical Framework. Springer, 2007.

[24] H. Comon-Lundh and S. Delaune. The Finite Variant Property: How to Get Rid of Some
Algebraic Properties. In Proceedings of the 16th International Conference on Rewriting
Techniques and Applications (RTA 2005), volume 3467 of Lecture Notes in Computer Sci-
ence, pages 294–307. Springer, 2005.

[25] D. De Schreye, R.Glück, J. Jørgensen, M. Leuschel, B. Martens, and M. H. Sørensen.
Conjunctive Partial Deduction: Foundations, Control, Algorithms, and Experiments. The
Journal of Logic Programming, 41(2-3):231–277, 1999.

[26] F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, and C. Talcott. Associative
Unification and Symbolic Reasoning Modulo Associativity in Maude. In Proceedings of
the 12th International Workshop on Rewriting Logic and its Applications (WRLA 2018),
volume 11152 of Lecture Notes in Computer Science, pages 98–114. Springer, 2018.

[27] F. Durán, S. Lucas, and J. Meseguer. MTT: The Maude Termination Tool (System De-
scription). In Proceedings of the 4th International Joint Conference on Automated Rea-

36

soning (IJCAR 2008), volume 5195 of Lecture Notes in Computer Science, pages 313–319.
Springer, 2008.

[28] S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Cryptographic Protocol Analysis
Modulo Equational Properties. In Foundations of Security Analysis and Design V (FOSAD
2007/2008/2009 Tutorial Lectures), volume 5705 of Lecture Notes in Computer Science,
pages 1–50. Springer, 2009.

[29] S. Escobar and J. Meseguer. Symbolic Model Checking of Infinite-State Systems Using
Narrowing. In Proceedings of the 18th International Conference on Term Rewriting and
Applications (RTA 2007), volume 4533 of Lecture Notes in Computer Science, pages 153–
168. Springer, 2007.

[30] S. Escobar, J. Meseguer, and R. Sasse. Variant Narrowing and Equational Unification.
Electronic Notes in Theoretical Computer Science, 238(3):103–119, 2009.

[31] S. Escobar, R. Sasse, and J. Meseguer. Folding Variant Narrowing and Optimal Variant
Termination. The Journal of Logic and Algebraic Programming, 81(7–8):898–928, 2012.

[32] M. Fay. First Order Unification in an Equational Theory. In Proceedings of the 4th Inter-
national Conference on Automated Deduction (CADE 1979), pages 161–167. Academic
Press, Inc., 1979.

[33] M. Hanus and B. Peemöller. A Partial Evaluator for Curry. In Proceedings of the 28th
International Workshop on (Constraint) Logic Programming (WLP 2014), volume 1335,
pages 155–171. CEUR-WS.org, 2014.

[34] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993.

[35] M. Leuschel. Improving Homeomorphic Embedding for Online Termination. In Proceed-
ings of the 8th International Workshop on Logic Programming Synthesis and Transforma-
tion (LOPSTR 1998), volume 1559 of Lecture Notes in Computer Science, pages 199–218.
Springer, 1998.

[36] J. W. Lloyd and J. C. Shepherdson. Partial Evaluation in Logic Programming. The Journal
of Logic Programming, 11(3-4):217–242, 1991.

[37] B. Martens and J. Gallagher. Ensuring Global Termination of Partial Deduction while
Allowing Flexible Polyvariance. In Proceedings of the 12th International Conference on
Logic Programming (ICLP 1995), pages 597–611. The MIT Press, 1995.

[38] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical
Computer Science, 96(1):73–155, 1992.

[39] J. Meseguer. Variant-Based Satisfiability in Initial Algebras. In Proceedings of the 4th
International Workshop for Safety-Critical Systems (FTSCS 2015), volume 596 of Com-
munications in Computer and Information Science, pages 3–34. Springer, 2015.

[40] J. Meseguer. Strict Coherence of Conditional Rewriting Modulo Axioms. Theoretical
Computer Science, 672:1–35, 2017.

[41] J. Meseguer. Generalized Rewrite Theories, Coherence Completion, and Symbolic Meth-
ods. Journal of Logical and Algebraic Methods in Programming, 110, 2020.

[42] J. Meseguer, M. Palomino, and N. Martí-Oliet. Equational Abstractions. Theoretical Com-
puter Science, 403(2–3):239–264, 2008.

[43] J. Meseguer and P. Thati. Symbolic Reachability Analysis Using Narrowing and its Appli-
cation to Verification of Cryptographic Protocols. Higher-Order and Symbolic Computa-
tion, 20(1–2):123–160, 2007.

[44] A. Middeldorp and E. Hamoen. Counterexamples to Completeness Results for Basic Nar-
rowing. In Proceedings of the 3rd International Conference on Algebraic and Logic Pro-

37

gramming (ALP 1992), volume 632 of Lecture Notes in Computer Science, pages 244–258.
Springer, 1992.

[45] P. C. Ölveczky and J. Meseguer. The Real-Time Maude Tool. In Proceedings of the
14th International Conference on Tools and Algorithms for Construction and Analysis of
Systems (TACAS 2008), volume 4963 of Lecture Notes in Computer Science, pages 332–
336. Springer, 2008.

[46] B. Peemöller. Normalization and Partial Evaluation of Functional Logic Programs. PhD
thesis, University of Kiel, Germany, 2017.

[47] The Presto Website, 2020. Available at: http://safe-tools.dsic.upv.es/presto.
[48] G. Roşu. K: A Semantic Framework for Programming Languages and Formal Analysis

Tools. In Dependable Software Systems Engineering, volume 50 of NATO Science for
Peace and Security Series - D: Information and Communication Security, pages 186–206.
IOS Press, 2017.

[49] A. Rodríguez, F. Durán, A. Rutle, and L. M. Kristensen. Executing Multilevel Domain-
Specific Models in Maude. Journal of Object Technology, 18(2):4:1–21, 2019.

[50] S. Skeirik and J. Meseguer. Metalevel Algorithms for Variant Satisfiability. Journal of
Logical and Algebraic Methods in Programming, 96:81–110, 2018.

[51] J. R Slagle. Automated Theorem-Proving for Theories with Simplifiers, Commutativity,
and Associativity. Journal of the ACM, 21(4):622–642, 1974.

[52] P. Viry. Equational Rules for Rewriting Logic. Theoretical Computer Science, 285(2):487–
517, 2002.

38

A Proofs of Technical Results

In this appendix, we demonstrate the main technical results of the paper, together with other
important results for equational partial evaluation.

In the following, given a substitution σ and a renaming ρ , we define RNρ(σ)(x)=RNρ(σ(x))
for x ∈ Dom(σ) (renaming of a substitution). We recall the following two main results of [6].

Theorem 5 (Preservation of executability conditions by EQNPEU
A (E ,Q) [6]). Let E =(Σ,E]

B) be an equational theory such that ~E = (Σ,B,~E) is a decomposition of E , let u be a Σ-term,
and let Q be a finite set of Σ-terms.

Given an unfolding operator U and an abstract operator A , let Q′ =EQNPEU
A(E ,Q) and

let E ′ = (Σ′,E ′]B′) =GENTHEORY(Q′,(Σ,E]B)) be the partial evaluation of E w.r.t Q. Then,
~E ′ is a decomposition of E ′.

Theorem 6 (Strong Correctness and Completeness of EQNPEU
A (E ,Q) [6]). Let E = (Σ,E]

B) be an equational theory such that ~E = (Σ,B,~E) is a decomposition of E , and let Q be a finite
set of Σ-terms.

Given an unfolding operator U and an abstract operator A , let Q′ =EQNPEU
A(E ,Q) and

let E ′ = (Σ′,E ′]B′) =GENTHEORY(Q′,(Σ,E]B)) is the partial evaluation of E w.r.t Q. Let u
be a Σ-term, let ρ be an independent renaming of Q′, and let u′ = RNρ(u). If u is B-closed w.r.t.
Q′ and Σ, then (u;∗

σ ,~E,B
v)∈ VN	~E (u) for a variant v that is B-closed w.r.t. Q′ and Σ, if and only

if (u′;∗
σ ′,~E ′,B

v′) ∈ VN	~E ′(u
′), where v′ =B RNρ(v) and σ ′ ≤B RNρ(σ).

Theorem 3. The operator AElgg(Q,T,B) terminates and is an abstraction operator in the sense
of Definition 3.

Proof. (Proof sketch) The proof is a slight modification of the proof of Proposition 18 of [6] that
considers subsort overloading. Note that Condition (1) of Definition 3 is trivially fulfilled, since
absĔB only applies the lggB operator, which cannot introduce function symbols not appearing in
Q or T . Condition (2) is proved by well-founded, structural induction on MQ∪T , which is the
multiset of all the depths of the terms in Q∪T . The induction entirely resembles the proof in
[6] with a minor change in the treatment of the constructor case absĔB(Q,c(tn)), where c is a
constructor symbol. In the original proof, there is no need to check the least sort of c(tn : sn) since
no overloaded operator c could have both a constructor and a defined typing. Here, we relaxed
this condition in favor of the milder preregularity-below property and thus the constructor case
absĔB(Q,c(tn : sn)) is applied if and only if the following refined check is fulfilled: c : sn → s ∈
Σ s.t. c ∈Ω, ls(t) = s.

Similarly, termination of the abstract operator computation can be proved as in the proof
of Theorem 2 of [6]. The proof scheme again exploits a well-founded, structural induction on
MQ∪T .

First, we ensure that executability conditions are preserved for rewrite theories that are spe-
cialized by using the NPERU

A algorithm.

Lemma 1 (Preservation of decomposition). Let R = (Σ,E]B,R) be a topmost rewrite theory
where ~E = (Σ,B,~E) is a decomposition of E = (Σ,E]B). Given an unfolding operator U and
an abstract operator A , let R ′ = (Σ′,E ′]B′,R′) = NPERU

A(R) be a specialization of R under
the independent renaming ρ . Then, ~E ′ = (Σ′,B′, ~E ′) is a decomposition of E ′ = (Σ′,E ′]B′).

39

Proof. By Theorem 5. ut

Lemma 2 (Preservation of topmost condition). Let R = (Σ,E]B,R) be a topmost rewrite
theory where ~E = (Σ,B,~E) is a decomposition of E = (Σ,E]B). Given an unfolding operator
U and an abstract operator A , let R ′ = (Σ′,E ′]B′,R′) = NPERU

A(R) be a specialization of
R under the independent renaming ρ . Then, R ′ is topmost.

Proof. Immediate, since the topmost property ensures that no function symbol of the signature Σ
admits a subterm of the topmost sort State. Then, the property follows straightforwardly because
no extra sorts are introduced by the independent renaming ρ: given ρ(t) = ft(xn : sn), where t
has sort s, we have ft : sn→ s. ut

Lemma 3 (Preservation of coherence). Let R = (Σ,E] B,R) be a topmost rewrite theory
where E = (Σ,E]B), ~E = (Σ,B,~E) is a decomposition of E , R is E -coherent, and the left-hand
sides of the rules in R are (~E,B)-strongly irreducible.

Given an unfolding operator U and an abstract operator A , let R ′ = (Σ′,E ′]B′,R′) =
NPERU

A(R) be a specialization of R under the independent renaming ρ . Then, R′ is E ′-coherent
with E ′ = (Σ′,E ′]B′).

Proof. Immediate by the condition of (~E,B)-strong irreducibility since no equation can be ap-
plied to the left-hand side of a rule of R. ut

It is very important that equations do not interfere with the topmost property, as shown in
the following example.

Example 19. The following rewrite theory does not satisfy the strong irreducibility condition of
Lemma 3 because the left-hand side f(X,Y) of the rewrite rule can be narrowed by using the
equation.

mod EXA-COHERENCE is

sorts AB F .

ops a b : -> AB [ctor] .

op f : AB AB -> F .

vars X Y : AB .

eq f(X,a) = f(X,b) [variant] .

rl f(X,Y) => f(a,Y) [narrowing] .

endm

The specialization of this rewrite theory proceeds by partially evaluating the two expressions
occurring in the rule: f(X,Y) and f(a,Y). The partially evaluated equational theory contains
one extra variant equation.

eq f(a, a) = f(a, b) [variant] .

Given the independent renaming {f(X,b) 7→ f0(X),f(X,Y) 7→ f1(X,Y),f(a,Y) 7→ f2(Y),
f(a,b) 7→ f3}, the specialized rewrite theory is

mod EXA-COHERENCE is

sorts AB F .

ops a b : -> AB [ctor] .

vars X Y : AB .

op f0 : AB -> F [ctor] .

40

op f1 : AB AB -> F .

op f2 : AB -> F .

op f3 : -> F [ctor] .

eq f1(X, a) = f0(X) [variant] .

eq f2(a) = f3 [variant] .

rl f1(X, Y) => f2(Y) [narrowing] .

endm

However, this theory is no longer coherent, and moreover the term f(b,b) is reducible in the
original rewrite theory but the corresponding renamed term f0(b) cannot be reduced in the
specialized rewrite theory.

Now we are ready to prove that the specialization of a rewrite theory preserves the exe-
cutability conditions of the original rewrite theory.

Theorem 1. (Preservation of executability conditions by NPERU
A(R)). Let R = (Σ,E]B,R)

be a topmost rewrite theory such that E = (Σ,E]B) and R is E -coherent. Let ~E = (Σ,B,~E) be
a decomposition of E , and let the left-hand sides of the rules in R be (~E,B)-strongly irreducible.
Let U be an unfolding operator and let A be an abstract operator. Given the set Q of the maxi-
mal calls in the normalized rules of R, let R ′ = (Σ′,E ′]B′,R′) =NPERU

A(R) be the specializa-
tion of R, with Q′ =EQNPEU

A((Σ,E]B),Q) and E ′ = (Σ′,E ′]B′) =GENTHEORY(Q′,(Σ,E]
B)) being the partial evaluation of E w.r.t Q. (under a given independent renaming ρ for Q′).

Then, ~E ′ = (Σ′,B′, ~E ′) is a decomposition of E ′, R′ is E ′-coherent, and the left-hand sides of
the rules in R′ are (~E ′,B′)-strongly irreducible.

Proof. The result follows immediately from Lemmata 1, 2 and 3 ut

In order to prove our main result, we first prove the following auxiliary lemma.

Lemma 4 (Preservation of unification). Let R = (Σ,E]B,R) be a topmost rewrite theory
such that E = (Σ,E]B) and R is E -coherent. Let ~E = (Σ,B,~E) be a decomposition of E , and
let the left-hand sides of the rules in R be (~E,B)-strongly irreducible. Let U be an unfolding
operator and let A be an abstract operator. Given the set Q of the maximal calls in the nor-
malized rules of R, let R ′ = (Σ′,E ′] B′,R′) =NPERU

A(R) be the specialization of R, with
Q′ =EQNPEU

A((Σ,E]B),Q) and E ′ = (Σ′,E ′]B′) =GENTHEORY(Q′,(Σ,E]B)) being the
partial evaluation of E w.r.t Q. (under a given independent renaming ρ for Q′).

Let t be a term that is B-closed w.r.t. Q′ and Σ and let l be the left-hand side of a rule in R.
Then, σ is an E -unifier of t and l if and only if RNρ(σ) is an E ′-unifier of RNρ(t) and RNρ(l).

Proof. Since l is (~E,B)-strongly irreducible, we have that (tσ)↓~E,B =B lσ . By Theorem 6, l

being (~E,B)-strongly irreducible implies RNρ(l) is (~E ′,B′)-strongly irreducible. Since t is B-
closed w.r.t. Q′ and Σ, by Theorem 6, we have that there exists a substitution θ such that
(t;∗

θ ,~E,B
lσ) ∈ VN	~E (t) if and only if (t ′;∗

θ ′,~E ′,B′
lσ ′) ∈ VN	~E ′(t

′), where t ′ = RNρ(t), θ ′ =

RNρ(θ), and σ ′ = RNρ(σ). Therefore, the conclusion follows. ut

The following result establishes the strong correctness of the NPERU
A specialization Al-

gorithm 1, which states that the specialized rewrite theory R ′ =NPERU
A(R) and the original

theory R are equivalent in the very strong sense that all computations in R are preserved in R ′.

Theorem 2. (Strong correctness of NPERU
A(R)). Let R = (Σ,E]B,R) be a topmost rewrite

theory such that E = (Σ,E]B) and R is E -coherent. Let ~E = (Σ,B,~E) be a decomposition

41

of E , and let the left-hand sides of the rules in R be (~E,B)-strongly irreducible. Let U be an
unfolding operator and let A be an abstract operator. Given the set Q of the maximal calls
in the normalized rules of R, let R ′ = (Σ′,E ′]B′,R′) =NPERU

A(R) be the specialization of
R, with Q′ =EQNPEU

A(E ,Q) and E ′ = (Σ′,E ′]B′) =GENTHEORY(Q′,(Σ,E]B)) being the
partial evaluation of E w.r.t Q. (under a given independent renaming ρ for Q′).

Let u ∈TΣ(X) be B-closed w.r.t. Q′ and Σ and u′ = RNρ(u) ∈TΣ′(X).

1. (u→∗
R,~E]B

v) if and only if (u′→∗
R′,~E ′]B′

v′), with v′ =B′ RNρ(v).

2. If E satisfies the FVP, then for any (~E,B)-irreducible computed substitution σ , (u ;∗
σ ,R,~E]B

v) if and only if (u′;∗
σ ′,R′,~E ′]B′

v′), with v′ =B′ RNρ(v) and σ ′ =B′ RNρ(σ).

Proof. Immediate by Lemma 4 which works for: (i) matching with only axioms B, and (ii)
unification with equations E and axioms B. ut

Global termination of the EQNPEU
A(E) algorithm was proved in [6] for a version of Ufvp(Q, ~E)

and AElgg(Q,L ,B)) that do not deal with subsort overloading for constructor operators. By
replacing these notions with the extended definitions of equational closedness and equational
generalization given in this article, the proof of global termination extends with no changes to
theories that fully cope with subsort overloading and that are either finite variant or non-finite
variant.

More precisely, for the equational theories that do not satisfy the FVP, the equational homeo-
morphic embedding integrated in Ufvp(Q, ~E), which is used to prevent infinite narrowing deriva-
tions, is not affected by the extension, and termination of AElgg(Q,L ,B) is not affected by the
extension either. For equational theories that have the FVP, Ufvp(Q, ~E) terminates by definition,
and hence the tandem Ufvp/AElgg cannot introduce any nontermination issues.

Theorem 7 (Termination of EQNPEU
A(E ,Q)). Let E = (Σ,E]B) be an equational theory,

and ~E = (Σ,B,~E) be a decomposition of E . Let Q be a set of Σ-terms. Let U be an unfolding
operator and let A be an abstract operator. Then, Algorithm EQNPEU

A(E ,Q) terminates both
for the tandem Ufvp/AElgg and the tandem Ufvp/AElgg.

Proof. The result follows from: 1) the fact that Ufvp(Q, ~E) terminates for FVP theories; 2) the
local termination of EQNPE for Ufvp(Q, ~E) (Theorem 1 in [6]); 3) termination of the abstrac-
tion operator AElgg(Q,L ,B)) (Theorem 2 in [6]); and 4) the fact that the proof of the global
termination of EQNPE in (Theorem 3 in [6]) relies on: a) termination of the applied unfolding
operator and termination of the abstraction operator AElgg(Q,L ,B)). ut

Now we can prove the termination result for the symbolic specialization of rewrite theories that
are defined on top of both, finite variant and non-finite variant equational theories.

Theorem 4. (Termination of NPERU
A(R)). Let R = (Σ,E]B,R) be a rewrite theory such that

E = (Σ,E]B), and ~E = (Σ,B,~E) is a decomposition of E . Let U be an unfolding operator
and let A be an abstract operator. Algorithm NPERU

A(R) terminates when E satisfies the FVP
(respectively, E does not satisfy the FVP) with the tandem Ufvp/AElgg (respectively, the tandem
Ufvp/AElgg).

Proof. Termination of the Phase 1 follows straightforwardly from Theorem 7. Termination of the
Phase 2 is immediate since function RNρ trivially terminates (structural induction over terms).

ut

42

B Client-Server Communication protocol

This section includes the complete Maude specification of the client-server communication pro-
tocol of Example 1.

fmod CAESAR-CIPHER is

pr TRUTH-VALUE .

sorts Nat NzNat Symbol Message .

subsort NzNat < Nat .

subsort Symbol < Message .

--- Nat constructors and defined functions for natural numbers

op 0 : -> Nat [ctor] .

op s : Nat -> NzNat [ctor] .

op _<_ : Nat Nat -> Bool .

op _+_ : Nat Nat -> Nat [assoc comm] .

--- if then else

op [_,_,_] : Bool Nat Nat -> Nat .

vars X Y : Nat .

--- Addition, lower-than, and if-then-else: definition

eq 0 + X = X [variant] .

eq s(X) + Y = s(X + Y) [variant] .

eq 0 < s(X) = true [variant] .

eq X < 0 = false [variant] .

eq s(X) < s(Y) = X < Y [variant] .

eq [true,X,Y] = X [variant] .

eq [false,X,Y] = Y [variant] .

--- Alphabet symbols

op a : -> Symbol [ctor] .

op b : -> Symbol [ctor] .

op c : -> Symbol [ctor] .

--- list constructor (messages)

op __ : Message Message -> Message [ctor assoc] .

--- Symbol-to-Nat Nat-to-Symbol operators: declaration and definition

op toNat : Symbol -> Nat .

op toSym : Nat -> Symbol .

op len : -> Nat .

eq len = s(s(s(0))) . --- Alphabet cardinality

eq toNat(a) = 0 [variant] .

eq toNat(b) = toNat(a) + s(0) [variant] .

eq toNat(c) = toNat(b) + s(0) [variant] .

43

eq toSym(0)= a [variant] .

eq toSym(s(0)) = b [variant] .

eq toSym(s(s(0))) = c [variant] .

--- Encryption/Decryption operators: declaration and definition

op shift : Nat -> Nat .

op unshift : Nat -> Nat .

op en : Nat Nat -> Nat .

op de : Nat Nat -> Nat .

op enc : Message Nat -> Message .

op dec : Message Nat -> Message .

var M : Message .

var K : Nat .

eq shift(X) = [s(X) < len,s(X), 0] [variant] .

eq unshift(0) = s(s(0)) [variant] .

eq unshift(s(X)) = X [variant] .

eq en(X,0) = X [variant] .

eq en(X,s(Y)) = en(shift(X),Y) [variant] .

eq de(X,0) = X [variant] .

eq de(X,s(Y)) = de(unshift(X),Y) [variant] .

eq enc(S:Symbol,K) = toSym(en(toNat(S:Symbol),K)) [variant] .

eq enc(S:Symbol M,K) = toSym(en(toNat(S:Symbol),K)) enc(M,K) [variant] .

eq dec(S:Symbol,K) = toSym(de(toNat(S:Symbol),K))[variant] .

eq dec(S:Symbol M,K) = toSym(de(toNat(S:Symbol),K)) dec(M,K) [variant] .

endfm

mod CLI=SERV-PROTOCOL-CAESAR is

pr CAESAR-CIPHER .

sorts Content State Packet Cli Serv Host CliName ServName Conf Status.

subsorts Packet Cli Serv < State .

subsorts CliName ServName < Host .

op Srv-A Srv-B : -> ServName [ctor] .

op Cli-A Cli-B : -> CliName [ctor] .

op null : -> State [ctor] .

op _&_ : State State -> State [ctor assoc comm id: null] .

op _<-_ : Host Content -> Packet [ctor] .

op {_,_} : Host Message -> Content [ctor] .

op [_,_,_,_,_] : CliName ServName Message Nat Status -> Cli [ctor] .

op [_,_] : ServName Nat -> Serv [ctor] .

op success : -> Status [ctor] .

op mt : -> Status [ctor] .

op <_> : State -> Conf [ctor] .

var K : Nat .

var C : CliName .

44

var S : ServName .

vars Q M : Message .

var St : State .

rl [req] : < [C, S, Q, K, mt] & St > => < [C, S, Q, K, mt] &

(S <- { C,enc(Q,K) }) & St > .

rl [reply] : < (S <- {C, M}) & [S,K] & St > => < [S,K] &

(C <- {S, dec(M,K)}) & St > .

rl [rec] : < (C <- {S, Q}) & [C, S, Q, K, mt] & St > =>

< [C, S, Q, K, success] & St > .

endm

45

