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Abstract

This work aims to provide a general mechanism for safety enforcement in
rewriting logic computations. Our technique relies on an assertion-guided
model transformation that leverages the newly defined Maude strategy lan-
guage for ensuring rich safety policies in non-deterministic programs. The
transformed system is guaranteed to comply with user-defined invariants that
are expressed in a strategy-based, pattern-matching logic, thus preventing the
concurrent system to reach any unsafe states. The performance and scala-
bility of the technique is empirically evaluated and benchmarked on a set of
realistic programs.
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1. Introduction

Invariant enforcement is a proactive approach to guarantee software safety.
Invariants, which are generally introduced and used for maintenance and ver-
ification purposes, are logical assertions that are held to be true during the
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system execution so that they allow programming errors and incorrect im-
plementations to be detected whenever some assertion is falsified.

Maude is a high-level programming language and system that supports
functional, concurrent, logic, and object-oriented computations. A rewrite
theory (or Maude program) combines a term rewriting system R, which spec-
ifies the concurrent transitions of a system, with an equational theory E that
specifies system states as terms of an algebraic datatype. The equational
theory E is generally split into a set E of equations and a set Ax of axioms
(i.e., distinguished equations that specify algebraic laws such as commutativ-
ity, associativity, and unity for some program operators). The equations of
E are implicitly oriented from left to right as rewrite rules and operationally
used as simplification rules, while the axioms of Ax are mainly used for Ax-
matching so that rewrite steps in R are performed modulo the equations and
axioms of E ⊎ Ax.

In this paper, we propose a technique for enforcing invariants on Maude
programs that are equipped with system assertions and with an execution
strategy that constricts computation paths to follow a series of actions (i.e.,
rule applications). A system assertion (a.k.a. state assertion) consists of a
pair Π#φ where Π (the state template) is a term and φ (the state invariant)
is a quantifier-free first-order formula with equality that defines a safety prop-
erty that must hold on all of the system states that match (modulo equations
and axioms) the state template Π.

Maude does not provide direct support for expressing execution invari-
ants. However, it does provide support to control the execution process by
means of the newly defined strategy language [1]. Given a set of system
assertions A and an overly general Maude program R (i.e., a program that
deploys all desired traces but may disprove some of the assertions), our trans-
formation coerces R into a strategy-controlled program R′ that prevents the
system from reaching any states not satisfying the assertions of A. The pro-
gram R′ is obtained by superposing (on top of R) a strategy module that is
automatically generated from R and A and compels the program execution
in such a way that every run complies with the assertions. Moreover, when-
ever the safety policy A is explicitly coupled with a fixed path strategy P ,
the synthesized control strategy ensures the fulfillment of the overall policy.

The main advantage of our technique is that it leverages the Maude strat-
egy language to enforce the system assertions so that it does not depend on
hard-coded, ad-hoc safety checks. Program execution with constraining as-
sertions is typically based on either externally monitoring invariant fulfilment
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or somehow integrating the assertions into the system code. While such an
integration avoids the heavy performance penalties that are introduced by
system monitors, integrating programs and assertions is far from trivial since
they are usually expressed in different formalisms and live at different lev-
els of abstraction. Moreover, after the integration, the invariants typically
get lost amidst the code, which jeopardizes its location, tracing, and main-
tainance [2]. In our approach, invariants are expressed in separate Maude
modules from the system code, thus naturally avoiding any mixing of invari-
ants and code. As another advantage, more refined versions of a program
can be incrementally built by simply adding new logical constraints into the
given assertion set without any programming effort. This makes it possible
to adapt existing Maude programs to predefined safety policies and allows
the inexperienced user to largely forget about Maude (and Maude strategy
language) syntax and semantics.

This paper improves the preliminary approach of [3, 4], where an auto-
mated correction methodology for Maude programs is formalized with respect
to a set of assertions. The correction was essentially achieved by transform-
ing the original program rules into guarded program rules whose conditions,
which are expressed by means of new (equationally-defined) functions, ensure
the satisfiability of all of the assertions. The technique in [3, 4] applies to
topmost rewrite theories (i.e., Maude programs in which terms can only be
rewritten at the root position), and it not only modifies the program rules
but also transforms the underlying equational theory by introducing the new
equations and operators. This is in contrast with the new transformation
approach for safety enforcement formalized in this paper, which allows more
sophisticated policies to be considered on a wider class of strategy-controlled
programs that are not necessarily topmost. Moreover, our novel transforma-
tion is conceptually simpler as it does not change the underlying equational
theory. This allows the synthesized program refinements to not only be more
akin to the original program but also more efficient.

This paper is organized as follows. After some technical preliminaries
in Section 2, we introduce a running example that we use to illustrate the
kind of software adaptation that we aim to produce automatically. Section
3 recalls the Maude strategy language that can be used to restrain and/or
guide the rewrite process. Section 4 shows how safety policies can actually
be defined as system assertions in our rewriting setting. Section 5 formalizes
our safety enforcement methodology, while Section 6 illustrates and exper-
imentally evaluates the STRASS system, which implements our proposed
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transformation. Section 7 describes a typical safety-enforcement session in
STRASS, and finally Section 8 concludes.

2. Preliminaries

Let us recall some important notions that are relevant to this work. We
assume some basic knowledge of term rewriting [5] and Rewriting Logic [6].
Some familiarity with the Maude language [7] is also required.

We consider a signature Σ of typed operators (i.e, function symbols). The
operators type structure is encoded as a poset (S,<) that models the usual
subsort relation over a set of sort S [7]. We also consider an S-sorted family
V = {Vs}s∈S of disjoint variable sets, and we write τ(Σ,V) and τ(Σ) for the
corresponding term algebras. The set of variables that occur in a term t is
denoted by Var(t). We assume pre-regularity of the signature Σ: for each
operator declaration f : s1 × · · · × sn → s, and for the set Sf containing all
sorts s′ that appear in operator declarations of the form f : s′1, · · · , s′n → s′

in Σ such that si ≤ s′i for 1 ≤ i ≤ n, the set Sf has a least sort. Thanks
to pre-regularity of Σ, each term t in τ(Σ,V) has a unique least sort that is
denoted by ls(t).

A position w in a term t is represented by a sequence of natural numbers
that addresses a subterm of t. Given a term t, we let Pos(t) denote the set of
positions of t. By t|w, we denote the subterm of t at position w. A substitution
σ ≡ {x1/t1, x2/t2, . . . , xn/tn} is a mapping from the set of variables V to the
set of terms τ(Σ,V), which is equal to the identity everywhere except for a
set of variables {x1, . . . , xn}.

A labelled conditional equation, or simply (conditional) equation, is an
expression of the form [l] : λ = ρ if C, where l is a label (i.e., a name that
identifies the equation), λ, ρ ∈ τ(Σ,V), and C is a (possibly empty) sequence
c1 ∧ . . . ∧ cn, where each ci is a Boolean expression1. When the condition C
is empty, we simply write [l] : λ = ρ.

A labelled conditional rewrite rule, or simply (conditional) rule, is an
expression of the form [l] : λ ⇒ ρ if C, where l is a label, λ, ρ ∈ τ(Σ,V),
and C is a (possibly empty) conjunction of Boolean expressions c1 ∧ . . .∧ cn.
When the condition C is empty, we simply write [l] : λ ⇒ ρ. By label(r),

1Actually, Maude supports different kinds of conditions in equations such as equational
conditions, membership tests, and matching conditions. Nonetheless, all of them can be
interpreted as Boolean expressions whose canonical form is a truth value.
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we denote the label of the rewrite rule r, while labels(R) denotes the set of
rewrite rule labels for the rules in R. When no confusion can arise, rule and
equation labels [l] are often omitted.

An equational theory E is a pair (Σ, E), where Σ is a signature, E =
∆∪Ax with ∆ being a collection of (oriented) conditional equations and Ax
a collection of equational axioms such as associativity, commutativity, and
unity that can be associated with any binary operator of Σ. The equational
theory E induces a congruence relation on the term algebra τ(Σ,V), which
is denoted by =E.

A conditional rewrite theory (or simply, rewrite theory) is a triple R =
(Σ, E,R), where (Σ, E) is an equational theory and R is a set of conditional
rewrite rules.

In a rewrite theory R = (Σ,∆∪Ax,R), computations evolve by rewriting
terms using the equational rewriting relation →R,E, which applies the rewrite
rules in R to terms modulo the equational theory E = (Σ,∆ ∪ Ax) [6]. A
computation in R = (Σ, E,R) is hence a (possibly infinite) rewrite sequence
t0 →R,E t1 . . . →R,E tn, where terms ti are called states. States are irreducible
forms (modulo Ax) computed by first applying a rewrite rule of R and then
normalizing the resulting term by using the equations in ∆ as simplification
rules. We often use the notation t

r→R,E t′ to make the rule r used in a
rewrite step explicit. Given any rewrite relation →, by →∗ (resp., →+), we
denote the usual transitive and reflexive (resp., transitive) closure of →.

The transition space of all computations in R from the initial state t0 can
be represented as a computation tree TR(t0) whose branches specify all of the
computations in R that originate from t0.

We also consider a natural partition of the rewrite theory signature as
Σ = D ⊎ Ω, where Ω are the constructor symbols, which are used to define
(irreducible) data values, and D = Σ \ Ω are the defined symbols, which are
evaluated away via equational simplification. Terms in τ(Ω,V) are called
constructor terms.

Nondeterministic as well as concurrent software can be formalized as
rewrite theories which can be encoded in Maude. Therefore, throughout
the paper, a rewrite theory is also called a Maude program. Let us see an
example.

Example 2.1. Consider a Maude program RDAM that models a simplified,
non-deterministic dam controlling system to monitor and manage the water
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volume of a given basin2. RDAM is a slight adaptation of the dam controller
in [3]. In the program code, variable names are fully capitalized.

We assume that the dam is provided with three spillways called s1, s2, and
s3, each of which has four possible aperture widths of increasing discharge
capacity close, open1, open2, open3. Each spillway is formally specified by
a term [S,O], where S ∈ {s1, s2, s3} and O ∈ {close, open1, open2, open3}.
A global spillway configuration is a multiset [s1,O1] [s2,O2] [s3,O3] that
groups together the three spillways by means of the usual associative and
commutative infix, union operator __ (written in mixfix notation with empty
syntax) whose identity is the constant empty. System states are defined by
terms of the form { SC | V | T } where SC is a global spillway configura-
tion, V is a rational number that indicates the basin water volume (in m3),
and T is a natural number that timestamps the current configuration in the
style of Lamport clocks, i.e., defines a partial causal ordering of events.

eq inflow = 3000 . --- Basin water inflow
eq aperture(close) = 0 . --- Outflow for a closed spillway
eq aperture(open1) = 200 . --- Outflow for aperture width open1
eq aperture(open2) = 400 . --- Outflow for aperture width open2
eq aperture(open3) = 1200 . --- Outflow for aperture width open3

--- Basin water outflow for a given spillway configuration
eq outflow(empty) = 0 .
eq outflow([S,O] SS) = aperture(O) + outflow(SS) .

Figure 1: Equational definition of basin inflow and outflow.

Figure 1 shows the equational specification that formalizes basin water
inflow and outflow. To keep the exposition simple, we assume that the basin
water inflow is constant, while the basin outflow depends on the width of the
spillway apertures and can be computed as the sum of the outflows of each
spillway in the spillway configuration. Note that inflow and outflow values
are measured in m3/min and are hard-coded into the dam controller. More
realistic scenarios could be easily defined by sophisticating the basin inflow
and outflow functions.

The system dynamics is specified by the eight rewrite rules in Figure 2,

2A complete Maude specification of the dam controller is available at the STRASS
website at http://safe-tools.dsic.upv.es/strass.
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rl [nocmd] : { SC | V | T } => { SC | V | T } .
rl [openC-1] : { [S,close] SS | V | T } => { [S,open1] SS | V | T } .
rl [open1-2] : { [S,open1] SS | V | T } => { [S,open2] SS | V | T } .
rl [open2-3] : { [S,open2] SS | V | T } => { [S,open3] SS | V | T } .
rl [close1-C] : { [S,open1] SS | V | T } => { [S,close] SS | V | T } .
rl [close2-1] : { [S,open2] SS | V | T } => { [S,open1] SS | V | T } .
rl [close3-2] : { [S,open3] SS | V | T } => { [S,open2] SS | V | T } .
crl [volume] : { SC | V | T } => { SC | V’ | (T + deltaT) }

if V’ := (V + inflow * deltaT) - (outflow(SC) * deltaT) .

Figure 2: (Conditional) rewrite rules for the dam controlling system.

which implement system state transitions. The openX-Y rewrite rules pro-
gressively increment the aperture width of a given spillway (e.g., the rule
open1-2 increases the aperture of the spillway S from level open1 to level
open2). Dually, closeX-Y rewrite rules progressively decrement the aper-
ture width of a spillway. The rule nocmd specifies the empty command which
basically states that no action is taken on the spillway configuration by the
dam controller at time instant T. These eight rules, called aperture command
rules, implement instantaneous spillway modifications that do not change the
time instant or the basin water volume.

The temporal evolution of the basin water volume is specified by the condi-
tional rewrite rule volume that computes the volume V’ at time T + deltaT,
given the input volume V at time T. The parameter deltaT is measured in
time units (e.g., minutes) and can be set by the user. The volume computa-
tion changes the input volume V by adding the water inflow and subtracting
the corresponding water outflow over the deltaT interval.

It is worth noting that RDAM does not implement any spillway management
policy that safely restricts and guides the applications of the aperture com-
mand rules. Furthermore, RDAM does not encode a fair interleaving between
the applications of the rule volume and the remaining aperture command
rules; hence, there is no guarantee that a new basin water volume is computed
after each spillway aperture change. These two facts might lead to anomalous
computations that (i) may reach potentially hazardous system states (e.g., an
extremely high water volume), and also (ii) may include meaningless (and
possibly infinite) sequences of aperture command rule applications. In the
rest of the paper, we show how Maude strategies and safety policies can be
used together to solve (i) and (ii).
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3. The Maude Strategy Language

Rule-based rewriting is a highly nondeterministic process where, at every
step, many rules could be applied at various positions. In order to provide
a finer control on rule application, Maude 3.0 introduced a new specification
layer on top of the standard system modules by means of Maude’s strategy
language [1, 7]. This (sub-)language allows the user to control the rewriting
process respecting the separation of concerns principle since the rewrite the-
ory is not modified in any way and could be executed according to different
strategies.

For the purposes of this work, we consider the proper subset of the Maude
strategy language that contains the primitive operators that allow the safety
properties of our framework to be expressed.

Definition 3.1. [1] A strategy (or strategy expression) S for a rewrite theory
R is an expression that is built using the following abstract syntax.

fail | idle | l | amatch P s.t. C | α ; β | (α | β) | α ? β : γ | α∗ | α+ | α! | all | not(α)

where l is a rewrite rule label, α, β, γ are strategies, P ∈ τ(Ω,V) is a
(possibly non-ground) constructor term, and C is an equational condition.

A path strategy P is any strategy expression that only includes occurrences
of rule labels and operators α ; β, α∗, α+, α!, (α | β), all. We use path
strategies to represent admissible sequences of rule applications which are
used to guide the program space exploration. We also use the remaining
strategy constructors as auxiliary operators to implement our transformation
technique in Section 5. We denote the set of all the path strategies that can
be built in R by PStr(R).

The semantic interpretation of a strategy is defined in [1, 7] as a transfor-
mation from a term to a set of terms. Given the rewrite theory R = (Σ, E,R),
the semantics of a strategy S, denoted as JSK, is a function τ(Σ) → 2τ(Σ) that
identifies those system states t′ ∈ JSK(t) stemming from t ∈ τ(Σ) by finitely
controlled executions of the rules of R. Rules to be executed are given by
the strategy expression, which is built by combining the strategy operators
of Definition 3.1. For the sake of completeness, we recall the strategy con-
structor semantics of [1, 7] in the following definition.

Definition 3.2. [7] Let R = (Σ, E,R) be a rewrite theory. Let t ∈ τ(Σ).
The strategy operators of Definition 3.1 have the following semantics.
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JidleK(t) = {t} JfailK(t) = ∅ Jα|βK(t) = JαK(t) ∪ JβK(t) Jα;βK(t) =
⋃

t′∈JαK(t)

JβK(t′)

JlK(t) = {t′ ∈ τ(Σ) | t r→R,E t′ for any r ∈ R s.t. label(r) = l}

Jamatch P s.t. CK(t) =

{
{t} if θ ∈ {σ | ∃w ∈ Pos(t) s.t. Pσ =E t|w} ∧ Cθ holds
∅ otherwise

Jα?β : γK(t) =

{
Jα;βK(t) if JαK(t) ̸= ∅
JγK(t) if JαK(t) = ∅

Jα∗K(t) = Jidle | α;α∗K(t) Jα+K(t) = Jα;α∗K(t) Jα!K(t) = Jα∗; (α ? fail : idle)K(t)

JallK(t) = {t′ ∈ τ(Σ) | t r→R,E t′ for any r ∈ R} Jnot(α)K(t) = Jα ? fail : idleK(t)

Roughly speaking, the idle strategy always succeeds and returns the
given state t unaltered as the only result. In contrast, the fail strategy
always fails for any given state in the sense that it produces no result (i.e.,
an empty set of resulting states). The rule label construct provides a fine
control over rewrite rule applications: by specifying a strategy with the rule
label l, only rules identified by l are applied to t (rules marked as nonexec
are excluded) delivering the set of terms obtained by rewriting t with the
rule l.3 The sequential operator α ; β models strategy concatenation by first
applying α to the initial state t and then applying β to the states yielded
by α. The choice operator α | β executes α or β on the state t, and the
results are both those of α and those of β. The amatch P s.t. C construct
implements testing features: the test succeeds delivering the singleton {t},
when (i) there is a match modulo E between the pattern P and a subterm of
t with matching substitution θ and (ii) the instantiated equational condition
Cθ holds. Otherwise, the test fails and ∅ is delivered as the result.

Conditional strategies are implemented via the operator α?β : γ. This
operator executes α and then β on its results, but if α does not produce any,
it executes γ on the initial term. That is: α is the condition; β is the strategy
for the positive branch, which applies to the reduced terms computed by α;
and γ is the strategy for the negative branch, which is applied to the initial
term only if α fails.

3In the case when the rule to be applied is conditional and includes rewrite expressions,
strategies for each rewrite expression must also be provided.
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The strategy not(α) fails when the strategy α succeeds, and it succeeds
(as the idle strategy) when α fails. The strategies α∗, α+, α! respectively
specify the transitive and reflexive closure of any strategy α, the transitive
closure of α, and the normalization operator α! = α∗; not(α) that repeatedly
applies α until it cannot be further applied. The all strategy triggers a single
rewrite step on t with all the rules available in R, yielding the corresponding
set of reduced terms.

Given a strategy expression S, we can formalize the notion of computation
tree of R w.r.t. S by resorting to the small-step operational semantics of [1]
that determines exactly which computation paths are described by a strategy
expression.

Definition 3.3. Let R = (Σ, E,R) be a rewrite theory and let S be a strategy
for R. Let t0 ∈ τ(Σ). The computation tree T S

R(t0) for t0, w.r.t R and S,
is a sub-tree of TR(t) whose branches represent computations of the form
t0 →R,E t1 . . . →R,E tn, n ≥ 0, where each ti is computed by the strategy
according to the small-step semantics of [1] for 0 ≤ i ≤ n.

Note that Definition 3.3 ensures that tn is reachable from state t0 using the
strategy S whenever tn ∈ JSK(t0). Intuitively, T S

R(t) refines the computation
tree TR(t) by getting rid of those computations of TR(t) that do not satisfy
the strategy S, thereby reducing the search space of the rewrite theory R.

For convenience sake, we introduce the following notation. Given a
rewrite theory R = (Σ, E,R) and a set L of rewrite rule labels, we define the
macro all-(L) = l1 | . . . | ln where {l1, . . . , ln} = labels(R) \ L.

Example 3.4. Let us consider the Maude program RDAM of Example 2.1
together with the path strategy all-(volume) whose definition is

(nocmd | openC-1 | open1-2 | open2-3 | close1-C | close2-1 | close3-2)

Roughly speaking, given a term t, the strategy all-(volume) rewrites t by
using only aperture command rules, while the volume rule cannot be applied.

On top of all-(volume), we can build the more complex path strategy
alt that enforces a volume computation after any application of an aperture
command rule. This can be easily achieved by the strategy

alt = (all-(volume) ; volume) +

This way, any computation in T alt
RDAM

(t) correctly alternates aperture com-
mands with volume updates. Note that such a rule alternation cannot be
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directly achieved by our previous transformation [3] since it does not sup-
port Maude strategies. Indeed, in [3], we define ad-hoc and more complex
data structures for states in order to enforce safe rule interleavings, while
alternation is hardcoded into the rewrite rule definition itself.

Given the strategy S, the computation tree T S
R(t) can be explored by using

the Maude search command srewrite (srew, for short) whose (simplified)
syntax is srew [n] t using S, where n is an optional parameter representing
a bound on the number of solutions (i.e., reachable terms) t′ ∈ JSK(t) to be
computed.

Example 3.5. Given the Maude program RDAM of Example 2.1 and the path
strategy alt of Example 3.4,

t = {[s1,close] [s2,close] [s3,close] | 5000 | 0}

is an initial state modeling a dam configuration at time 0 with three closed
spillways and a basin volume equal to 5000 m3. Then, the following Maude
command generates the first two states at time 5 which are reachable from t
using alt.

Maude> srew [2] {[s1,close] [s2,close] [s3,close] | 5000 | 0 } using alt .

Solution 1
rewrites: 74 in 0ms cpu (1ms real) (165919 rewrites/second)
result State: {[s1,close] [s2,close] [s3,close] | 20000 | 5}

Solution 2
rewrites: 74 in 0ms cpu (1ms real) (157782 rewrites/second)
result State: {[s1,open1] [s2,close] [s3,close] | 19000 | 5}

Solution 1 is obtained by first applying the nocmd rule, which does not
change the spillway configuration, and then computing the new basin volume.
Solution 2 represents a state where spillway s1 has been opened and a new
basin volume has been computed according to the new spillway configuration.

Path strategies provide a fine control on rule applications and are a valu-
able tool to restrain and/or guide the rewrite process. However, they are
not designed to enforce safety properties on system states. Indeed, given a
computation t1 →R,E t2 →R,E . . . →R,E tn in T P

R (t), we can only infer that
tn is reachable from t1 using the path strategy P, but there is no way to dis-
cover whether some state ti in the considered computation violates a safety
constraint.
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Example 3.6. Given the Maude program RDAM of Example 2.1 and the path
strategy alt of Example 3.4,

t = {[s1,open3] [s2,close] [s3,close] | 49989000 | 0}

is an initial state with an extremely high and potentially dangerous water
volume. By executing

srew [2] [s1,open3] [s2,close] [s3,close] | 49989000 | 0 using alt .

we explore the first two states that are reachable from t using the alt strategy
yielding the following two solutions:

Solution 1
rewrites: 76 in 0ms cpu (0ms real) (737864 rewrites/second)
result State: {[s1,open3] [s2,close] [s3,close] | 50000000 | 5}

Solution 2
rewrites: 76 in 0ms cpu (0ms real) (622950 rewrites/second)
result State: {[s1,open3] [s2,open1] [s3,close] | 49999000 | 5}

Note that the first solution keeps the spillway configuration untouched and
increases the water volume reaching the critical threshold of 50 million m3.

In the next section, we formalize an assertion language that complements
path strategies by allowing safety properties to be specified and enforced on
system states in order to get rid of those computations that exhibit unsafe
behaviors.

4. An Assertion Language for Specifying Safety Policies

A safety policy for a rewrite theory R is given as a set A of system as-
sertions that specify properties of the software system encoded by R. The
assertions are expressed as (quantifier-free) first-order formulas (predicates)
that are built using the usual Boolean operators. The truth values are given
by the formulas true and false, and the usual conjunction (and), disjunction
(or), and negation (not)4 are used to express composite properties. Vari-
ables in the formulas are not quantified. Besides Boolean operators, φ may

4Note that the not operator implements the usual Boolean negation whose semantics
differs from the semantics of the not strategy operator of Definition 3.2.
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include Maude built-in operators as well as user-defined predicates/functions
that can be equationally specified. Satisfiability of formulas is checked via
equational rewriting. More specifically, a formula φ holds in a rewrite theory
R if it can be reduced to true using the equations of R oriented from left to
right as rewrite rules.

Definition 4.1. Given a rewrite theory R = (Ω∪D, E,R), with E = ∆∪Ax,
a state assertion has the form Π#φ, where Π is a constructor term in τ(Ω,V)
and φ is a quantifier-free first-order logic formula.

Operationally, a state assertion Π#φ defines a generic safety property for
a state t that specifies a logic invariant φ which must be enforced in any
subterm of t that is an instance (modulo Ax) of Π.

Definition 4.2. Let R = (Σ, E,R), with E = ∆ ∪ Ax, be a rewrite theory.
Let t be a state in R. A state assertion Π#φ holds in t if for every w ∈ Pos(t)
and for every substitution σ, if t|w =Ax Πσ then φσ evaluates to true. We
also say that t is safe w.r.t. Π#φ.

It is worth noting that a state assertion Π#φ trivially holds in t, when
there is no subterm of t that matches Π modulo Ax.

Given a set A of state assertions and a state t, t is safe w.r.t. A iff for
each a ∈ A, a holds in t.

Example 4.3. Let us consider the user-defined function openSpillways(SC)
that returns the number of open spillways in the spillway configuration SC,
whose equational definition is

eq openSpillways(empty) = 0 .
eq openSpillways([S,O] SC) = if (O =/= close) then (1 + openSpillways(SC))

else openSpillways(SC) fi .

and the safety policy ADAM of Figure 3 for the dam controller of Example 2.1
that specifies some safety constraints to prevent basin critical situations.

More specifically, assertion a1 states that, in every system state, the basin
water volume must be less than 50 million m3 to avoid dam bursts and poten-
tially disastrous floods. Assertion a2 specifies that, whenever the basin water
volume is greater than 40 million m3, all of the spillways must be open and
the aperture width of at least one spillway must be maximal (level open3).
Assertion a3 requires the closure of all of the spillways when the basin water
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(a1) { SC | V | T } # (V < 50000000)
(a2) { [ S1,O1 ] [ S2,O2 ] [ S3,O3 ] | V | T} # (V > 40000000) implies (

(O1 == open3 and O2 =/= close and O3 =/= close) or
(O2 == open3 and O1 =/= close and O3 =/= close) or
(O3 == open3 and O1 =/= close and O2 =/= close)

)
(a3) { SC | V | T } # (V < 10000000) implies (openSpillways(SC) == 0)
(a4) { SC | V | T } # ((V >= 10000000) and (V <= 40000000))

implies (openSpillways(SC) == 2)

Figure 3: Safety policy ADAM for the dam controller RDAM.

volume is particularly low (10 million m3). Finally, assertion a4 specifies the
spillway handling for an intermediate water volume (10 million m3 ≤ V ≤ 40
million m3); in this scenario, we require exactly two spillways to be constantly
open.

5. Computing Safe Maude Programs

Program transformation techniques have been successfully applied to pro-
gram refinement, specialization, and optimization. Inferring program trans-
formations has many uses, such as bug fixing, refactoring, and program op-
timization [8].

In our approach, given a Maude program R together with a safety policy
A and a path strategy P for R, the program R is transformed into a program
R′ that restricts the computations of R to a subset that is deemed safe w.r.t.
A. More specifically, the transformed program R′ overlays a strategy module
on top of R. This module encodes each state assertion of A into equivalent
strategy expressions and smoothly integrates them into P in order to drive
the system execution in such a way that (i) unsafe states cannot be reached,
(ii) unsafe computations are pruned away, and (iii) all computations that
satisfy A are kept.

5.1. Using Maude Strategies to Encode State Assertions
Given a state assertion a ∈ A, we define a state filter for a, that is, a

Maude strategy that checks whether a holds in a state t.

Definition 5.1. Let Π#φ be a state assertion in A. A state filter for Π#φ
is a strategy FΠ#φ defined as FΠ#φ := not(amatch Π s.t. not(φ)).
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Example 5.2. Consider the assertion a1 of the safety policy of Example 4.3.
The corresponding state filter is

Fa1 = not(amatch({SC | V | T} s.t. not(V < 50000000))

where the different meaning of operators not and not is explained in Foot-
note 4.

Roughly speaking, given a = (Π#φ) and a term t, applying the state
filter Fa to t can be thought of as a binary test that either fails (delivering
the empty set if a does not hold in t) or it succeeds (delivering the singleton
{t}, otherwise). More formally, the following proposition holds.

Proposition 5.3. Let R = (Σ, E,R) be a rewrite theory. Given a state
assertion a ∈ A, and a term t in τ(Σ)

JFaK(t) =

{
∅ if a does not hold in t

{t} otherwise

Proof. Immediate by Definition 3.2 (semantics of the strategy operators).

Example 5.4. Consider the rewrite theory RDAM of Example 2.1 together with
the state

t = {[s1,close] [s2,close] [s3,close] | 50000010 | 0}

and the assertion a1 of the safety policy of Example 4.3. Clearly, a1 does
not hold in t since the water volume is greater than 50 millions m3. Indeed,
JFa1K(t) = ∅ as witnessed by the execution of the state filter Fa1 on t:

srew {[s1,close] [s2,close] [s3,close] | 50000010 | 0} using
not(amatch {SC | V | T} s.t. not(V < 50000000)) .

No solution.
rewrites: 3 in 0ms cpu (0ms real) (21739 rewrites/second)

A state filter for a state assertion can be naturally lifted to sets of state
assertions by concatenating the state filters associated with each state asser-
tion via the sequential strategy operator ;.

Definition 5.5. Let {a1, . . . , an} be a safety policy. Then, the state filter
F{a1,...,an} for {a1, . . . , an} is defined as F{a1,...,an} := Fa1 ; ... ; Fan.
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The state filter FA allows one to check whether all of the state assertions
of A hold in a given state by sequentially testing the state filters that are
associated with the assertions in A. More formally,

Proposition 5.6. Let R = (Σ, E,R) be a rewrite theory. Let A be a safety
policy. Let t be a term in τ(Σ). Then,

JFAK(t) =

{
∅ if ∃ a ∈ A s.t. a does not hold in t

{t} otherwise

Proof. Let A = {a1, . . . , an}, n ≥ 0, be a safety policy. The proof proceeds
by induction on n.

n = 0. A is the empty set. Hence, the proposition vacuously holds.

n > 0. We have A = {a1, . . . , an}. By Definition 5.5, FA = Fa1 ; ... ; Fan .
Let t be a term in τ(Σ). We distinguish two cases: (i) all of the
state assertions a1, . . . , an hold in t; (ii) there exists a state assertion
a ∈ {a1, . . . , an} that does not hold in t

Case i. Since a1, . . . , an hold in t, a1, . . . , an−1 hold in t. Hence, by
inductive hypothesis JF{a1,...,an−1}K(t) = {t}. Also, by Proposition
5.3, JF{an}K(t) = {t} because an holds in t. Then

JFAK(t) =
⋃

t′∈JF{a1,...,an−1}K(t)

JF{an}K(t
′) (by Definition 3.2)

= JF{an}K(t) (by inductive hypothesis)
= {t} (by Proposition 5.3)

Case ii. There exists a ∈ {a1, . . . , an} such that a does not hold in t. If
a ∈ {a1, . . . , an−1}, then by inductive hypothesis JF{a1,...,an−1}K(t) =
∅. Hence,

JFAK(t) =
⋃

t′∈JF{a1,...,an−1}K(t)

JF{an}K(t
′) (by Definition 3.2)

= ∅ (by inductive hypothesis)
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If a = an, then we have

JFAK(t) =
⋃

t′∈JF{a1,...,an−1}K(t)

JF{an}K(t
′) (by Definition 3.2)

= JF{an}K(t) (by inductive hypothesis)
= ∅ (by Proposition 5.3)

Corollary 5.7. Let R = (Σ, E,R) be a rewrite theory. Let A be a set of
state assertions. Let t be a term in τ(Σ). Then, JFAK(t) = {t} iff t is safe
w.r.t. A.

Proof. Direct consequence of Proposition 5.6 and the definition of safe state
w.r.t. a set A of state assertions.

5.2. Integrating State Assertions into Path Strategies
In Section 5.1, we showed how state assertions can be checked on a system

state by executing the corresponding state filter on it. In other words, we
have an effective methodology that allows one to establish if a given state is
safe w.r.t. a given safety policy.

Given a path strategy P, we can combine state filters with P to build a
safe version of P that drives system executions only through safe states. For
this purpose, we define the following auxiliary transformation.

Definition 5.8. Let R = (Σ, E,R) be a rewrite theory and let A be a safety
policy. Let P,P1,P2 ∈ PStr(R) be path strategies. We define the path trans-
formation safe(P) as follows:

safe(P) =


l;FA if P := l, with l ∈ labels(R)

all;FA if P := all

safe(P1)
• if P := P•

1, with • ∈ {∗,+, !}
safe(P1) ◦ safe(P2) if P := P1 ◦ P2, with ◦ ∈ {; , |}

Roughly speaking, the transformation safe(P) attaches to every rule ap-
plication (which can be triggered by a rule label l or by the operator all) a
state filter that checks the safety of the state that results from applying the
considered rewrite rule.
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Definition 5.9. Let A be a safety policy and let P be a path strategy. Then, a
path-safe strategy w.r.t. A is a strategy P(A) defined as P(A) := FA; safe(P).

Given a rewrite theory R = (Σ, E,R), a path-safe strategy P(A) explores
the search space of R in the following way: given an initial state t, first the
state filter FA is executed on t to check whether t is safe w.r.t. A, and then
safe(P) is applied to guide the execution only through those states computed
by the strategy P that are safe w.r.t. A. This way, we guarantee that
any computation that has been generated by means of the strategy P(A)
only includes safe states. Furthermore, unsafe computations are completely
removed from the search space of R.

The soundness of the proposed transformation methodology is stated in
the following proposition.

Proposition 5.10. Let R = (Σ, E,R) be a rewrite theory, and let A be a
safety policy. Let P(A) be a path-safe strategy for A. Then,

i. Let t ∈ τ(Σ). Every computation in T P(A)
R (t) is also a computation in

TR(t);

ii. For every computation t1 →R,E t2 →R,E . . . →R,E tn in T P(A)
R (t1),

it holds (a) the states ti, i = 1, . . . , n, are safe w.r.t. A; and (b)
tn ∈ JPK(t1).

Proof. Claim i trivially holds since T P(A)
R (t) includes a subset of the com-

putations of TR(t) by Definition 3.3. Let us prove Claim ii.a and Claim
ii.b.

(ii.a) Let C = (t1 →R,E t2 →R,E . . . →R,E tn) be a computation in T P(A)
R (t1),

where P(A) = FA; safe(P). Then, by Definition 3.3, we have

tn ∈ JP(A)K(t1) = JFA; safe(P)K(t1).

Now, we proceed by contradiction and we assume that there exists a
state ti in C such that ti is not safe w.r.t. A. Hence, by Proposition
5.6, JFAK(ti) = ∅. We distinguish two cases: ti is the initial state t1,
and ti is any state in {t2, . . . tn}.

ti = t1. In this case, JFAK(t1) = ∅; hence, by Definition of the semantics
of the sequential operator ; (see Definition 3.2)

JP(A)K(t1) = JFA; safe(P)K(t1) = ∅
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which leads to a contradiction since we assumed tn ∈ JP(A)K(t1).

ti ∈ {t2, . . . , tn}. In this case, the unsafe state ti has been generated by
the rewrite step ti−1 →R,E ti which has been triggered by some
rule label l or the operator all in the path strategy P. Now note
that every occurrence of l and all in safe(P) is followed by an
application of the state filter FA, that is, l;FA and all;FA. Since
ti is not safe w.r.t A, in both cases, we have

Jl ; FAK(ti−1) = ∅

Jall ; FAK(ti−1) = ∅

Hence, ti is not reachable from ti−1 using l ; FA or all ; FA, which
leads to a contradiction because we assumed ti−1 →R,E ti.

(ii.b) Let C = (t1 →R,E t2 →R,E . . . →R,E tn) be a computation in T P(A)
R (t1).

Thus, tn ∈ JP(A)K(t1).

By Claim ii.a, we know that each ti in C is safe w.r.t A. Hence, by
Proposition 5.6, JFAK(ti) = {ti}, for i = 1, . . . , n which directly implies
that

Jl ; FAK(ti) = JlK(ti) (1)
Jall ; FAK(ti) = JallK(ti) (2)

By (1) and (2) and Definition 5.8, it is straightforward to show that
safe(P) = P (trivial structural induction on P). Finally,

tn ∈ JP(A)K(t1) = JFA ; safe(P)K(t1) (by Definition 5.9)
= Jsafe(P)K(t1) (by JFAK(t1) = {t1})
= JPK(t1) (by safe(P) = P)

Example 5.11. Consider again the Maude program RDAM of Example 2.1,
the path strategy alt of Example 3.4, and the safety policy ADAM of Exam-
ple 4.3. Then, the path-safe strategy safe-alt is obtained by applying the
transformation alt(ADAM) to alt:

safe-alt = alt(ADAM) = FADAM
; safe(alt) = FADAM

; ((all-(volume);FADAM
; volume;FADAM

)∗
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Note that, in this specific case, we can even optimize safe-alt by replacing
all-(volume) with all-(volume), thereby producing a strategy that contains
less state filters. Indeed, all-(volume) executes the state filter FADAM

after
each application of an aperture command rule, which is useless since such
rules do not change the water volume. Therefore, FADAM

can be safely executed
only once after applying the volume rule. Simple optimizations of this kind
are automatically carried out by the STRASS system. Now consider the initial
state t of Example 3.6, i.e., {[s1,close] [s2,close] [s3,close] | 49989000| 0}.
By executing

srew [2] [s1,close] [s2,close] [s3,close] | 49989000 | 0 using safe-alt .

we explore the first two states that are reachable from t using the safe-alt
strategy:

Solution 1
rewrites: 88 in 0ms cpu (0ms real) (265060 rewrites/second)
result State: {[s1,open3] [s2,open1] [s3,close] | 49999000 | 5}
Solution 2
rewrites: 88 in 0ms cpu (0ms real) (244444 rewrites/second)
result State: {[s1,open3] [s2,close] [s3,open1] | 49999000 | 5}

Note that the two solutions computed by safe-alt reach safe states where the
water volume is lower than 50 million m3. In contrast, the solutions yielded
by the unrestricted path strategy alt can reach such a critical threshold, thus
violating the state assertion a1 of ADAM as shown in Example 3.6.

6. The STRASS System

The safety enforcement methodology defined in this paper has been ef-
ficiently implemented in a Maude tool called STRASS (STRategy-based Au-
tomatic Safety aSsurance tool). The tool consists of three modules: a web
client, a RESTful web service, and the core module that contains the do-
main logic that is responsible for running the proposed safety enforcement
technique. The core has been implemented in Maude itself by using Maude’s
meta-level capabilities. The RESTful Web service has been written in Java.
The web client is provided with an intuitive graphical user interface and
is based on AJAX. It has been developed using the programming language
Svelte, which gets statically compiled to HTML, CSS, and JavaScript. The
implementation consists of about 800 lines of Java source code, 1200 lines
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of Maude5 code, and 2000 lines of combined HTML, CSS, TypeScript and
Svelte.

The STRASS tool is publicly available together with a number of examples
at http://safe-tools.dsic.upv.es/strass. Also a starting guide that
contains a complete description of all of the settings and detailed examples
of tool usage can be found at: http://safe-tools.dsic.upv.es/strass/
download/StartingGuide.pdf.

6.1. Implementation of STRASS
Given a safety policy A to be enforced on a Maude program R = (Σ, E,R),

the core logic of STRASS is implemented in five phases that are executed in
order: (i) the meta-level ascent phase, where the input program R is trans-
formed into rich meta-level data structures using Maude built-in functions;
(ii) the static analysis phase, where the (ascended) input program is analyzed
to extract some relevant sorting information that is described below; (iii) the
policy parsing phase, where the safety policy A is checked using a dedicated
parser); (iv) the generation phase, where the synthesized strategy module
is generated at the meta-level; and, lastly, (v) the meta-level descent phase,
where the generated constructs are converted into a string of pretty-printed,
executable source code.

Phases (i), (ii), and (iv) are implemented in the standard way using
Maude’s meta-level capabilities. With regard to phase (iii), STRASS im-
plements a dedicated parser that takes as input: (a) the signature Σ of the
input program, (b) the rule labels of the input program, (c) the provided
auxiliary predicates, and (d) the set of auxiliary, internal definitions that are
generated automatically during phase (ii). Different transient parsing con-
texts are generated that can be used depending on the particular expression
to be parsed. State assertions and path strategies are analyzed in phase
(iii). We first check that any formula φ in a state assertion Π#φ only con-
tains operators of R and user-defined auxiliary predicates, while the pattern
component Π is a constructor term of R. Next, we check that any label
that appears in a path strategy belongs to the rule labels of R. This parser
also leverages Maude meta-level features to support native Maude features
such as mixfix operators and user-defined operator precedence. The parser
has been endowed with the capability to track line numbers, allowing for

5We use a developer version of Maude implemented in C++ called Mau-Dev [9]
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accurate error messages.
As for phase (v), it creates a new strategy module that contains all of

the automatically generated definitions so that the original program modules
get untouched. In Maude, named strategy definitions are encoded using two
different constructs6, one using the keyword strat to declare the strategy
name alongside its type signature, and the other using sd to assign a concrete
strategy expression to said name [7, Section 10.2]. State assertions Π#φ in A
are encoded as state filter strategies FΠ#φ which are then wrapped in named
strategy definitions as follows:

strat si : @ ls(Π) .
sd si := FΠ#φ .

where i specifies an automatically generated index that ensures that the
strategy name is unique. The sort that appears after the @ symbol (or subject
sort) indicates the sort of terms to which the named strategy applies. In this
case, the least sort of the pattern component of the state strategy, ls(Π), is
used to satisfy the type signature.

Since the synthesized strategies should be applicable to input terms of
any sort at run time, strategies are specialized w.r.t. sorts (i.e., monomor-
phized) into a series of most specific strategy definitions at transformation
time. Generally, monomorphization is an automatic process that is concep-
tually contrary to generalization, in which polymorphic constructs of some
language (usually functions) are replaced by many monomorphic, specialized
instances until the result is determinate enough for execution purposes. The
purpose of the monomorphization transformation is twofold: it allows a legal
strategy module to be generated that satisfies the Maude type checker; and
it additionally leverages the sort hierarchy to enable useful optimizations.

In our implementation, each state filter FA is translated into the set {Fs
A |

s is a maximal sort in (S,<) of R}. Each monomorphized definition Fs
A is

assigned the name “s-state”. For instance, the strategy named System-state
checks all of the state assertions for terms of sort System (or a subsort of it).
The resulting source code follows this scheme:

strat s1-state : @ s1 .

6These strategy constructs can be considered analogous to the standard op and eq
definitions, respectively.
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sd s1-state := F s1
A .

. . .
strat sn-state : @ sn .
sd sn-state := F sn

A .

where s1, . . . , sn are maximal sorts in R. An analogous monomorphization
process is also applied to path-safe strategies, which are similarly assigned
the name “s-path”.

For the sake of the user’s convenience, given the path strategy P, STRASS
also computes the path-safe strategies corresponding to the transitive and
reflexive closure of P (i.e., P∗), the transitive closure of P (i.e, P+), and the
normalizing strategy P!. Hence, the user only has to provide P to get a
safe program w.r.t. P, P∗, P+, P!, and the safety policy A. This effectively
enables different run-time techniques for the exploration of the safe compu-
tation space without having to execute the correction technique more than
once. The strategies P∗, P+, P! are also monomorphized and are respectively
assigned the names “s*”, “s+”, and “s!”, for each one of the corresponding
sorts s in R.

Let us finally describe two useful optimizations of our framework that are
implemented by STRASS. The first one is an inlining transformation that
expands strategy calls and then simplifies the resulting strategy expressions.
For example, consider the strategy definitions:

sd s-state := idle .
sd s• := s-state ; ((all ; s-state) •) .

First, both calls to s-state are expanded to idle

sd s-state := idle .
sd s• := idle ; ((all ; idle) •) .

Then, since idle is the identity element of the strategy constructor _ ; _, by
applying (right and left) identity axioms, idle is dropped

sd s-state := idle .
sd s• := all • .

We then say the strategy s-state has been inlined into the strategy s•,
where • ∈ {*, +, !}.
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The second optimization, called sort-dependence filter erasure, removes
the calls to state filters FΠ#φ in Fs

A when it is possible to statically ensure
that the state assertion Π#φ vacuously holds because Π does not match any
possible subterms of a term of sort s. The following notion of sort graph
allows us to better describe this optimization. Roughly speaking, the sort
graph models the idea that terms of a certain sort can be “constructed upon”
subterms of different sorts. More formally, given a sort s of the signature
Σ, consider the set of sorts of all possible subterms of any term of sort s,
according to Σ. Given the signature Σ, the sort graph of Σ can be decided as a
reachability problem in the rewrite theory SortGraph(Σ) = (Σ∪ {⊤}, ∅, R),
where the rules of R are simply obtained by orienting (right to left) each
operator declaration f : s1, . . . sn → s in Σ as the set of rewrite rules s :
⊤ ⇒ si : ⊤, with i in 1, . . . , n, where ⊤ conceptually represents a universal
supersort of all sorts in Σ. That is, R = {s : ⊤ ⇒ si : ⊤, with i ∈ 1, . . . , n |
f : s1, . . . sn → s ∈ Σ}; hence, for any sort s of Σ, the normal forms of s in
the rewrite theory SortGraph(Σ) deliver all possible sorts of the subterms of
any term of sort s.

For instance, if the sort System does not simplify to Nat in the rewrite
theory SortGraph(Σ) (i.e., no term of sort System can contain a natural
number as subterm), then FSystemA may safely omit the state strategies that
are only relevant to natural numbers. For the purposes of the implementa-
tion, one of the specific steps performed by the static analysis phase (ii) is
computing and encoding the sort graph of Σ as a data structure called the
sort dependency map (SDM), which associates each sort s of Σ with the set
of its reachable sorts in the rewrite theory SortGraph(Σ) as follows:

SDM(S) = {s′ | s ⇒+ s′ in SortGraph(Σ)}

where ⇒+ denotes the transitive closure of the rewriting relation ⇒.
Finally, since the generated strategies may need to invoke the auxiliary

predicates in φ at run time, the auxiliary predicates provided by the user are
directly inserted into the synthesized strategy module, effectively exposing
them to all of the generated strategies but not to the original program.

6.2. Features
The key points of the STRASS tool are as follows:

• Efficient and easy to use: a program may be fixed with only three steps
using a friendly assistant-style user interface (Steps 1–3 of Figure 4).
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Figure 4: Graphical outline of the STRASS usage process

• Fast and performant: most programs can be fixed in milliseconds. Pro-
gram transformation time is often negligible.

• Support for an extremely wide variety of complex, multi-module Maude
programs making use of advanced language features.

• A set of representative examples can be selected from a drop-down list.

• Built-in editor featuring advanced text editing capabilities such as mul-
tiple cursor editing and code unfolding.

• Complete syntax highlighting for both Maude and our domain-specific
policy specification language.

• Detailed error messages with in-editor hints and markings.

• Automatic, transparent optimizations are applied to simplify the gen-
erated strategy module.

• Ability to upload Maude source code files from the local storage.

• All artifacts and a set of representative benchmarks are publicly avail-
able at the STRASS website for download.

6.3. Experimental Results
To experimentally evaluate the performance and the outcomes of the

STRASS system, we coupled several Maude programs with safety policies,
and we used STRASS to generate the corresponding safe versions. We bench-
marked STRASS on the following collection of Maude programs, which are
all available and fully described within the STRASS web platform: (i) Blocks
World, a Maude encoding of the classical AI planning problem that consists
of setting one or more vertical stacks of blocks on a table using a robotic arm;
(ii) Containers, a Maude specification that models the cargo manipulation
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in a container terminal; (iii) Dam Controller, the controlling system used as
our leading example; (iv) Maze, a non-deterministic maze exploration algo-
rithm; (v) Space invaders, a Maude specification of a classic videogame of the
70’s; and (vi) Satellite Controller, a realistic model of the behavior of an un-
manned space probe which can rotate on itself, extract scientific information
from points of interest and communicate with mission control under certain
visibility conditions, where durations of the different activities are measured
and coordinated using a series of clocks.

The primary objective of this experimental evaluation aims at comparing
the performance of the computed safe programs w.r.t. the original unsafe
counterparts both in terms of space and time. More precisely, we have con-
sidered four assertions per benchmark. We have generated three computation
trees of increasing depths (in the range [5, 50]) for each input program and its
corresponding strategy-driven version computed by STRASS. We have then
compared the size of the computation trees and the time needed to produce
them. Note that, for the original programs, the resulting search space may
contain unsafe states, while the transformed version only contains safe states
by construction.

All of the experiments were conducted on an Intel Xeon Silver 4215R
3.3GHz CPU with 378GB of RAM. Table 1 summarizes our results. For
each benchmark, we considered the original program R and its safe version
RS computed by STRASS. The generation time of RS for each considered
benchmark is negligible (less than 0.1 milliseconds in all cases). Column
Depth sets a bound to the depth of the computation trees that are generated
for R and RS, while SizeR and SizeRS

respectively measure the sizes of the
search spaces for R and RS as the number of states in their corresponding
computation trees. Execution times for the generation of the computation
trees of depth n are respectively shown in Columns TR and TRS

and are
measured in milliseconds. We set a timeout of 60 minutes for the generation
of the computation trees that is only overrun in the case of Maze. We recorded
the total speedup TR/TRS

in Column Speedup. It is worth noting that we
chose to measure the complexity of our experiments in terms of the size of
the generated program search space instead of using traditional program size
indicators such as lines of code or number of equations and rewrite rules.
This is because program size is not a meaningful indicator in our context
due to the highly, purely declarative nature of Maude, which allows one to
formalize extremely complex systems in a highly compact and concise way.
For instance, the satellite controller implements a detailed unmanned space
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R Depth SizeR SizeRS
TR TRS

Speedup

30 511,921 1,205 9,668 40 241.70
Blocks World 40 2,004,332 2,568 41,384 87 475.68

50 5,841,540 4,689 139,198 171 814.02

15 350,391 53,624 40,967 7,635 5.37
Containers 20 1,465,829 88,097 166,614 13,289 12.54

25 4,172,116 122,538 549,430 19,518 28.15

15 139,948 220 4,198 14 299.86
Dam Controller 30 2,271,930 505 82,845 30 2,761.50

45 9,581,406 790 392,157 48 8,169.94

4 196 23 8 2 4
Maze 6 133,225 78 59,553 9 6,617

8 >3,154,238 303 >1,236,722 53 >23,334.38

15 518,379 88,680 21,679 4,985 4.35
Space Invaders 20 1,797,799 268,115 120,930 19,609 6.17

25 5,024,516 720,649 515,246 65,345 7.89

40 648,965 8,585 35,776 1,508 23.72
Satellite 45 1,687,605 9,924 216,781 3,097 70.00

50 3,496,645 11,289 894,733 6,308 141.84

Table 1: Experimental results of the safe enforcement technique.

probe orbiting Earth in just 23 equations and 16 rewrite rules.
Our figures show impressive results. For all of the conducted experiments,

the proposed transformation achieves a dramatic reduction of the original
search space and its corresponding generation time by actively pruning un-
safe states from the computation tree of the input programs. On average,
the pruned search space is 2137 times smaller than the original one and is
computed 2364 times faster. One of the worst speedups is achieved by Space
invaders with depth 15, yet we narrow the original search space from 518,379
states to 88,680 states, thereby obtaining a 5.84x smaller computation tree
that is generated 4.35 times faster. The best performance is achieved by
executing STRASS on Maze. In this case, the generation of a computation
tree of depth 8 times out after 60 minutes delivering an incomplete search
space of 3,154,238 states. In contrast, the safe program yielded by STRASS
generates a complete tree of depth 8 that includes 303 safe states in just 53
ms.

STRASS supersedes and improves ATAME, the preliminary safety enforce-

27



ment tool based on our previous methodology defined in [4]. From a concep-
tual viewpoint, ATAME resorts to a bold program transformation approach
that typically generates overly complex and textually large conditional pro-
gram specifications, whereas STRASS neatly produces a strategy module that
supplements the original program without changing its code, thereby avoid-
ing the risk of jeopardizing the key executability properties of the code that
are required for its formal analysis or verification. Also, STRASS works on a
larger class of Maude programs as it can handle non-topmost rewrite theories
as well as rewrite expressions in rule conditions, while ATAME cannot. Actu-
ally, ATAME cannot be applied with correctness guarantees to Maze, Blocks
world, and Space invaders specifications since they contain either rewrite ex-
pressions or they are not topmost. In fact, ATAME can only transform Dam
controller and Containers and its performance for these benchmarks is com-
parable to the one of STRASS, with the speedup being greater than one for
Dam controller and less than one for Containers, as shown in Figure 5.
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Figure 5: Speedup of STRASS w.r.t. ATAME for programs Dam controller and Container

Finally, we note that, albeit programs fixed with ATAME may exhibit a
higher relative speedup for the case when the safety policy agressively prunes
a high quantity of states, STRASS consistently shows less overall overhead.
Actually, when we impose a vacuous safety policy (that is trivially satisfied
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and never deems any state or transition as unsafe) on our benchmark pro-
grams, the overall overhead of ATAME is 1.02 whereas the overall overhead
incurred by STRASS is only 0.16 across our benchmark set. We use over-
head to denote the relative slowdown that can be attributed to the safety
enforcement technique, which is calculated as (TRS

− TR)/TR. Note that an
overhead of zero indicates that the technique has not caused any additional
execution costs.

7. STRASS to the Rescue: a Typical Safety Enforcement Session

Let us illustrate how STRASS works in practice by showing a typical
safety-enforcement session for our dam controller specification of Example
2.1.

Maude programs can be uploaded in STRASS as simple .maude module
files, written from scratch inside a dedicated edit area, or they can be selected
from a preloaded collection of Maude programs that is provided with the
tool for demonstration purposes. In this case, to start the tool session, we
select Dam Controller from the preloaded example programs (see Figure 6),
which encodes the dam controller RDAM of Example 2.1 via the Maude module
DAM-CTRL.

The next phase allows the user to specify the safety properties to be
enforced on the input program. These properties include a path strategy P
and a safety policy A that contains one or more state assertions. Recall that
assertions may use logic predicates and functions that are already defined in
the program or new ones that can be specified at this stage.

In this session, we input the path strategy (all-(volume) ; volume)
and the assertions that specify the safety policy ADAM of Example 4.3 to-
gether with the additional function openSpillways, which is used in the
formalization of ADAM itself (see Figure 7).

At this point, by pressing the button Next, STRASS automatically gen-
erates the strategy module of Figure 8 ,which encodes the path-safe strategies
for the given input. Note that some strategy definitions (e.g., Spillways and
its accompanying search strategy definitions Spillways*, Spillways+, and
Spillways!) have been simplified by the inlining optimization to trivial
expressions such as idle and (all *) because no state assertion or path
strategy for sort Spillways exists in the safety policy ADAM.

The final outcome integrates the strategy module DAM-CTRL-SAFE into
the original module DAM-CTRL (see Figure 9) yielding a safe program w.r.t.
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    op _ in [_`,_`] : TimeStamp TimeStamp TimeStamp -> Bool .
T i [T1 T2] T > T1 d T < T2

    --- This operator checks whether a given time stamp falls in a given time interval 
    --- op _ in[_`,_`] : TimeStamp TimeStamp TimeStamp -> Bool .

    vars T T1 T2 : TimeStamp .

    --- We consider a multiset of spillways with identity empty (that is, empty represents an empty multiset of spi
    op empty : -> Spillways [ctor] . 
    op __ : Spillways Spillways -> Spillways [ctor assoc comm id: empty] .

    op `[_`,_`] : SpillwayId Aperture -> Spillway [ctor] .

    ops close open1 open2 open3 : -> Aperture [ctor] .

    --- A spillway is a pair (spillwayId,aperture).

    --- We assume our dam is provided with three spillways called s1, s2 and s3 
    --- (albeit this code can work with an arbitrary number of spillways provided their IDs are declared below)
    ops s1 s2 s3 : -> SpillwayId [ctor] .

    --- We consider 4 kinds of spillway openings of increasing discharge capacity

    subsort Nat < TimeStamp . --- we consider a Discrete time domain modeled by the set of natural numbers.
    sort State .

    sorts SpillwayId Aperture Spillway Spillways DamState TimeStamp .
    subsort Spillway < Spillways .

mod DAM-CTRL is
    protecting RAT . 

--- Rationals are needed to model basin water volume and 
--- its related parameters (e.g., inflow, outflow)

--- Just a simple nondeterministic dam controller

Figure 6: Loading the DAM-CTRL Maude module in STRASS.

ADAM, in which we can reproduce the safe behavior shown in Example 5.11.

8. Related work and Conclusion

The design of safety-critical and dependable systems is becoming increas-
ingly important. We have introduced an automated transformation technique
that supports the efficient enforcement of customized, strong invariant prop-
erties that are given apart from the system code in a purely declarative way.
In contrast to our previous work [4], the new methodology in this paper does
not modify the original rules or equations but simply enforces the assertions
A by superimposing a control module that is automatically generated from
A. By relying on Maude’s strategy language, the initial separation of con-
cerns is preserved by the transformation, leading to corrected programs that
are easier to understand and maintain.
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Back Next

Predicates
mod DAM-CTRL-PREDICATES is 
   protecting DAM-CTRL . 
   protecting EXT-BOOL .

endm

1
2
3
4
5
6
7
8

var S : SpillwayId .
var O : Aperture .
var SC : Spillways .

op openSpillways : Spillways -> Nat .
eq openSpillways(empty) = 0 .
eq openSpillways([ S,O ] SC) = if O =/= close then 1 + openSpillways(SC) else openSpillways(SC) fi .

Assertions
1
2
3
4
5
6

path for State : all-except(volume) ; volume
{ SC:Spillways ; V:Rat ; T:TimeStamp } # V:Rat < 50000000
{ [ S1:SpillwayId , O1:Aperture ] [ S2:SpillwayId , O2:Aperture ] [ S3:SpillwayId , O3:Aperture ] ; V:Rat ; T:T
{ SC:Spillways ; V:Rat ; T:TimeStamp } # (V:Rat < 10000000 implies openSpillways(SC:Spillways) == 0)
{ SC:Spillways ; V:Rat ; T:TimeStamp } # (V:Rat >= 10000000 and V:Rat <= 40000000 implies openSpillways(SC:Spil

Figure 7: Loading the safety policy ADAM in STRASS.

There are also many works in the literature about the automatic en-
forcement of specific safety properties, either statically or dynamically, with
the most traditional approaches being based on applying run-time checks
(see [3, 4] and references therein). Out of all of the related approaches, the
methodology presented in [2] is the closest to our work since it defines a
generic strategy to impose state invariants on Maude programs that can be
expressed in different logics. However, this is achieved by imposing (on top
of Maude) a programmed, ad-hoc strategy that dynamically drives the sys-
tem’s execution in such a way that some state transitions are avoided so that
every system state complies with the constraints. In contrast, our methodol-
ogy is static and enforces the system assertions by transforming the program
code in such a way that the imposed constraints are verified by construction
without resorting to any ad-hoc strategies.

The framework for assertion-based debugging of constraint logic programs
of [10] defines a program transformation that can be used for checking at
runtime those assertions that cannot be decided at compile time. Similarly
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smod DAM-CTRL-SAFE is
protecting DAM-CTRL .
protecting EXT-BOOL .
op openSpillways : Spillways -> Nat .
eq openSpillways(empty) = 0 .
eq openSpillways(SC:Spillways[S:SpillwayId, O:Aperture]) =

if O:Aperture =/= close then 1 + openSpillways(SC:Spillways) else openSpillways(SC:Spillways) fi .
strat Aperture! : @ Aperture .
strat Aperture* : @ Aperture .
strat Aperture+ : @ Aperture .
strat Aperture-state : @ Aperture .
strat DamState! : @ DamState .
strat DamState* : @ DamState .
strat DamState+ : @ DamState .
strat DamState-state : @ DamState .
strat SpillwayId! : @ SpillwayId .
strat SpillwayId* : @ SpillwayId .
strat SpillwayId+ : @ SpillwayId .
strat SpillwayId-state : @ SpillwayId .
strat Spillways! : @ Spillways .
strat Spillways* : @ Spillways .
strat Spillways+ : @ Spillways .
strat Spillways-state : @ Spillways .
strat State! : @ State .
strat State* : @ State .
strat State+ : @ State .
strat State-path : @ State .
strat State-state : @ State .
strat TimeStamp! : @ TimeStamp .
strat TimeStamp* : @ TimeStamp .
strat TimeStamp+ : @ TimeStamp .
strat TimeStamp-state : @ TimeStamp .
strat s2 : @ State .
strat s3 : @ State .
strat s4 : @ State .
strat s5 : @ State .
sd Aperture! := (all) ! .
sd Aperture* := (all) * .
sd Aperture+ := (all) + .
sd Aperture-state := idle .
sd DamState! := (all) ! .
sd DamState* := (all) * .
sd DamState+ := (all) + .
sd DamState-state := idle .
sd SpillwayId! := (all) ! .
sd SpillwayId* := (all) * .
sd SpillwayId+ := (all) + .
sd SpillwayId-state := idle .
sd Spillways! := (all) ! .
sd Spillways* := (all) * .
sd Spillways+ := (all) + .
sd Spillways-state := idle .
sd State! := (State-state) ; ((State-path) ; (((all) ; (State-path)) !)) .
sd State* := (State-state) ; ((State-path) ; (((all) ; (State-path)) *)) .
sd State+ := (State-state) ; ((State-path) ; (((all) ; (State-path)) +)) .
sd State-path := (((close1-C) ; (State-state)) | ((close2-1) ; (State-state)) | ((close3-2) ; (State-state)) |

((open1-2) ; (State-state)) | ((open2-3) ; (State-state)) |
(openC-1) ; (State-state)) ; ((volume) ; (State-state)) .

sd State-state := (s2) ; ((s3) ; ((s4) ; (s5))) .
sd TimeStamp! := (all) ! .
sd TimeStamp* := (all) * .
sd TimeStamp+ := (all) + .
sd TimeStamp-state := idle .
sd s2 := not(amatch {SC:Spillways ; V:Rat ; T:TimeStamp}

s.t. V:Rat < 50000000 = false) .
sd s3 := not(amatch {[S1:SpillwayId, O1:Aperture][S2:SpillwayId, O2:Aperture][S3:SpillwayId, O3:Aperture] ;

V:Rat ; T:TimeStamp}
s.t. V:Rat > 40000000 implies O1:Aperture == open3 and O2:Aperture =/= close and

O3:Aperture =/= close or O2:Aperture == open3 and O1:Aperture =/= close and
O3:Aperture =/= close or O3:Aperture == open3 and O1:Aperture =/= close and
O2:Aperture =/= close = false) .

sd s4 := not(amatch {SC:Spillways ; V:Rat ; T:TimeStamp}
s.t. V:Rat < 10000000 implies openSpillways(SC:Spillways) == 0 = false) .

sd s5 := not(amatch {SC:Spillways ; V:Rat ; T:TimeStamp}
s.t. V:Rat >= 10000000 and V:Rat <= 40000000 implies openSpillways(SC:Spillways) == 2 = false) .

endsm

Figure 8: The strategy module DAM-CTRL-SAFE for DAM-CTRL.
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    strat DamState-state : @ DamState .
    strat SpillwayId! : @ SpillwayId .
    strat SpillwayId* : @ SpillwayId .

    strat DamState! : @ DamState .
    strat DamState* : @ DamState .
    strat DamState+ : @ DamState .

    strat Aperture+ : @ Aperture .
    strat Aperture-state : @ Aperture .

    eq openSpillways(SC:Spillways[S:SpillwayId, O:Aperture]) = if O:Aperture =/= close then 1 + openSpillways(SC:Sp
    strat Aperture! : @ Aperture .
    strat Aperture* : @ Aperture .

    op openSpillways : Spillways -> Nat .
    eq openSpillways(empty) = 0 .

smod DAM-CTRL-SAFE is
    protecting DAM-CTRL .
    protecting EXT-BOOL .

    Generated by STRASS -- safe-tools.dsic.upv.es/strass
)

***(

    crl [volume] :  { SC ; V ; T } => { SC ; V' ; (T + deltaT) }  
                                    if V' := (V + inflow * deltaT) - (outflow(SC) * deltaT) .
endm

p p y
    --- configuration is observed.
    --- This is enforced in the next step by specifying a path assertion.

    strat SpillwayId+ : @ SpillwayId .
    strat SpillwayId-state : @ SpillwayId .
    strat Spillways! : @ Spillways .
    strat Spillways* : @ Spillways .
    strat Spillways+ : @ Spillways .

Figure 9: The resulting Maude module computed by STRASS.

to our work, any meta-interpretation level is eliminated since the process of
assertion checking is compiled into a transformed program which checks the
assertions while running on a standard (CLP) execution system. However,
the transformation of [10] does not apply to the complex rewrite theories
that we consider in this work, which support inductively nested structures
that may obey structural axioms such as associativity, commutativity, and
unity [4].

Liquid Haskell (LH) [11] allows Haskell code to be annotated with data
type invariants that complement the invariants imposed by the types with
logical predicates; this allows safety properties to be enforced at compile
time. A liquid type has the form {v : τ |e}, where τ is a Hindley-Milner type
and e is a Boolean expression and represents all the values u of type τ such
that the expression e[u/v] evaluates to true. Liquid type annotations are
provided by the programmer in the input file as Haskell comments that are
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ignored by GHC but are processed by LH instead. The first phase of LH uses
the Haskell compiler GHC to resolve the external references, to type-check
the program in the Hindley-Milner sense, and to transform it to its internal
core representation. As a result, a set of type constraints is generated in the
second phase, which are solved in a third phase with the help of a SMT solver.
In contrast to [11], which defines constraints at the type-level, our approach
specifies assertions at a specification level and uses them to statically direct
a program specialization technique that produces a safe version of the input
program. Then, safety checks are dynamically performed over the specialized
program in the standard Maude runtime environment without resorting to
external artifacts.

Also, loosely related to this work is the concept of program specialization
of terminating programs based on output constraints (i.e., program post-
conditions) [12]. This methodology translates the output constraints into a
characterization function for the program’s input that is used to guide a par-
tial evaluation process. In contrast, we deal with non-terminating concurrent
programs, and the specialization that we achieve cannot be produced by any
(conventional or unconventional) partial evaluation technique for Maude pro-
grams [13]. Our technique also presents similarities with automated program
correction and related problems such as code fixing and repair techniques [14]
since it allows a program with incomplete specifications (given by system as-
sertions) to be automatically fixed while keeping the transformed program
as close as possible to the original one.

The proposed technique has been implemented in the prototype tool
STRASS, which can be very useful for a programmer who wants to cor-
rect a program w.r.t. a preliminary version that was written with no safety
concerns. To our knowledge, the assertion-based functionality for molding
programs supported by STRASS is beyond the capabilities of all existing
Maude tools.
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