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ABSTRACT  
 
Program transformation is widely used for producing correct mutations of a given program so as to satisfy the 
user’s intent that can be expressed by means of some sort of specification (e.g. logical assertions, functional 
specifications, reference implementations, summaries, examples). This paper describes an automated 
correction methodology for Maude programs that is based on program transformation and can be used to 
enforce a safety policy, given by a set A of system assertions, in a Maude program R that might disprove some 
of the assertions. The outcome of the technique is a safe program refinement R' of R in which every computation 
is a good run, i.e., it satisfies the assertions in A. Furthermore, the transformation ensures that no good run of 
R is removed from R'. 
 
Advantages of this correction methodology can be summarized as follows. 
 

• A fully automatic program transformation featuring both program diagnosis and repair; 
• A simple logical notation to declaratively express invariant properties and other safety constraints 

through assertions; 
• No dynamic information is required to infer program fixes: the methodology is static and does not 

need to collect any error symptom at runtime.   
• All executability requirements are preserved by the correction transformation. 
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Method details  
 
 
 
Short introduction regarding the method applicability and motivation 
 

This paper describes an automated correction methodology that can be applied to impose safety properties 
on concurrent and nondeterministic software systems that are modelled as Maude programs. Nonetheless, the 
core idea of our correction transformation can be transferred to virtually any rewriting-based programming 
language, from simple term rewriting systems and rule-based languages such as CafeOBJ, OBJ, ASF+SDF, 
and ELAN, to widespread functional languages such as Haskell and Erlang, provided that the transformation 
preserves the executability conditions required by the language. Indeed, the proposed correction method 
transforms program rules into guarded program rules whose conditions supersede the (external) safety 
assertion checks and are simply evaluated by using the very same rewriting infrastructure of the language. 
Therefore, the provided assertion checking mechanism can be embedded into any setting that supports rewriting 
with an effort that depends on the complexity of the chosen formal framework.  
 

In the following, we outline the correction procedure for repairing Maude programs with respect to a safety 
policy that is expressed as a set of system assertions; a similar modus operandi can be followed to replicate 
this method in different rewriting frameworks such as those mentioned above. The advantage of the technique 
is that more refined versions of a program can be incrementally built without any programming effort by simply 
adding new safety constraints into the set of assertions. This makes it possible to adapt existing Maude 
programs to predefined safety policies and allows the inexperienced user to largely forget about Maude syntax 
and semantics. 
 
 
 
On the rewrite framework 
 

Maude is a high-performance language and system that efficiently implements Rewriting Logic [4], which is 
a logic of change that seamlessly unifies a wide variety of models of concurrency. A Maude program R is 
essentially made up of two components, E and R, where  
 

• E is a canonical (membership) equational theory that models system states as terms of an algebraic 
data type, and  

• R is a set of rewrite rules that define transitions between states and which is assumed to be coherent 
w.r.t. the equations in E.  
 

Canonicity of E and coherence between R and E are fundamental executability properties that guarantee 
the soundness and completeness of Maude’s evaluation mechanism [3].  
 
 Algebraic structures often involve axioms like associativity, commutativity, and/or identity (also known as 
unity) of function symbols, which cannot be handled by ordinary term rewriting but instead are handled implicitly 
by working with congruence classes of terms. More precisely, the membership equational theory E is 
decomposed into a disjoint union E = D È Ax, where 
 

• the set D consists of (conditional) membership axioms (i.e., axioms that assert the type of some terms) 
and equations that are implicitly oriented from left to right as rewrite rules (and operationally used as 
simplification rules), and  

• Ax is a set of algebraic axioms that are implicitly expressed as function attributes and are mainly used 
for Ax-matching.  
 

 The system evolves by rewriting states using equational rewriting, i.e., rewriting with the rewrite rules in R 
modulo the equations and axioms in E. For the sake of simplicity, we only consider topmost Maude programs, 
that is, Maude programs in which rewrites can only happen at the state top level position. This implies that no 
local state changes are allowed:  in other words, each rewrite step completely replace a state s1 with a new term 
representing the derived state s2. In [1], increasingly involved Maude program structures are considered (such 
as topmost modulo Ax rewrite theories and Russian doll theories that support system states with recursively 
nested structures).  
 
 In our framework, system safety properties are specified by means of assertions, that is, logical statements 
of the form S | j, where S is a term (the state template) and j is a quantifier-free, first-order logic formula (the 
state invariant). An assertion S | j holds in a system state s iff, for every subterm of s that matches (modulo E) 
the algebraic structure of the state template S with substitution σ, the constraints given by the instantiated 
formula φσ are satisfied. In our scenario, the notion of satisfaction of a (closed) instance φσ of φ boils down to 
reducing φσ to its truth value via equational rewriting. If an assertion does not hold in a system state s, we say 
that there is an assertion violation in s. 
 



 
Maude's formal tools are numerous and perform different analysis and verification tasks, either statically 

(e.g., Maude's theorem prover and model checker) or dynamically (Maude's assertion checker); see [1] for 
references. However, to the best of our knowledge, there is no previous methodology for automated safety 
enforcement in Maude. 
 
 
The proposed method   
 

Our correction method is based on a two-phase program transformation technique that allows a Maude 
program R to be refined into a program R' w.r.t. a set of assertions A as follows. Let us assume that the program 
R consists of the equation set E and the rewrite rule set R. 
 

1. The first phase translates the assertion set A into an executable equational definition Eq(A) that can 
be used to detect assertion violations within system states. Roughly speaking, given a system state s, 
a violation of some assertion in A is detected in s whenever a renamed apart version s’ of s can be 
simplified into the special constant fail by using the equational theory E of R extended with Eq(A).  
 
Specifically, each assertion (S | j) is encoded by a conditional equation in Eq(A) of the form   
 

ceq S’ = fail if not(ori(j’)) . 
such that 
 
•  S’ is a renamed apart version of the state template S where each operator f in S has been replaced     
   by a new operator f’;1 
•  fail is a fresh new constant that does not occur in R; 
• ori(t’) is a function that takes a renamed apart term t’ and restores its original version t, that is,  
   ori( t’	) = t. 
 
Note that assertion checking is executed over renamed versions of the original program states, while 
logic formulas are evaluated by using the original operators of R.  Renaming is key to neatly separate 
assertion checking from system computations and avoid interferences that might jeopardize 
termination, confluence and/or coherence properties in the repaired program (for a detailed discussion 
on renaming, see [1]). 

 
2. The second phase transforms the original rewrite rules of R into guarded, conditional rewrite rules that 

can only be fired if no system assertion is violated. Intuitively, this is achieved by transforming each 
rewrite rule (l ® r if C) of R into a refined version r’: (l ® r if C Ù ren(r) =/= fail) of r, which contains 
the extra constraint ren(r) =/= fail that holds when the renamed apart instances of the right-hand side 
r of the rule r cannot be simplified to fail by using the extended equational theory EÈ Eq(A).  

 
This way, we ensure that any state transition from state s1 to state s2 is enabled in the program R’ only 
if s2 is a safe state, that is, every assertion of A holds in s2. 
 

As an important advantage of the method, executability conditions of R and E are preserved by the correction 
transformation. Furthermore, the methodology copes with infinite space states and does not require the 
knowledge of any failing run. A rigorous and complete formalization of the method can be found in [1]. 
 
 
A typical correction transformation session 
 

To show how our correction methodology works in practice, we consider a topmost Maude program R
D
 that 

specifies a toy dam controller for monitoring and managing the water volume of a basin. The workflow of the 
correction methodology is depicted in Figure 1. In the sequel, variable names are fully capitalized. We assume 
that the dam model is provided with a spillway called s which has four possible aperture widths of increasing 
discharge capacity c, o1, o2. A spillway configuration is formally specified by a term [s,O], where  O belongs 
to the set {c,o1,o2}. System states are defined by terms of the form  
 

{ SC | V | T | AC } 
 

where SC is a spillway configuration, V is a rational number that indicates the basin water volume (in m3), T is a 
natural number that timestamps the current configuration, and AC (aperture command) is a Boolean flag that 
enables changes of the spillway aperture widths only when its value is true. 
 

To keep the exposition simple, we assume that the basin water inflow is constant, while the basin outflow 
depends on the aperture width of the current spillway configuration. Basin inflow and outflow are measured in 
m3/min and are specified by the following Maude equations 

                                                
1 Note that, in the case of mixfix operators, we just rename one operator symbol. For instance, the binary, mixfix operator  
< _ | _ > would be renamed < _ | _ >’. 



 

eq inflow = 2000 . 
eq outflow(c) = 0 . 
eq outflow(o1) = 1200 . 
eq outflow(o2) = 2200 . 
 

Note that more realistic scenarios could be easily defined by specifying more sophisticated basin inflow and 
outflow functions. 
 

The dam controller dynamics is modeled by the following eight rewrite rules, which implement system state 
transitions.  
 

rl [nocmd] : { SC | V | T | true } => { SC | V | T | false } . 
rl [openC-1] : { [s,c] | V | T | true } => { [s,o1] | V | T | false } . 
rl [open1-2] : { [s,o1] | V | T | true } => { [s,o2] | V | T | false } . 
rl [close1-C] : { [s,o1]| V | T | true } => { [s,c] | V | T | false } . 
rl [close2-1] : { [s,o2]| V | T | true } => { [s,o1] | V | T | false } . 
crl [volume] : { [s,O] | V | T | false } => { [s,O] | W | (T + deltaT) | true } 

              if W := (V + inflow * deltaT) - (outflow(O) * deltaT) . 
 
The openX-Y rewrite rules progressively increment the aperture width of the spillway s (e.g., the rule 

open1-2 increases the aperture of the spillway s from level open1 to level open2). Dually, closeX-Y rewrite 
rules progressively decrease the aperture width of a spillway. The rule nocmd specifies the empty command, 
which basically states that no action is taken on the spillway configuration by the dam controller at time instant 
T. The rule is fired only when the AC flag is enabled, and its application disables the flag to allow a new basin 
water volume to be computed in the next time instant. These rules implement instantaneous spillway 
modifications that do not change the time instant or the basin water volume. 

 
The temporal evolution of the basin water volume is specified by the conditional rewrite rule volume that 

computes the volume W at time T + deltaT, given the input volume V at time T. The parameter deltaT is 
measured in minutes and can be set by the user. The volume computation changes the input volume V by 
adding the water inflow and subtracting the corresponding water outflow over the deltaT interval. 

 
The use of the apertureCommand flag in the rule definitions guarantees a fair interleaving between the 

applications of the rule volume and the remaining rewrite rules. Specifically, this implies that a new basin water 
volume is computed after each spillway aperture width modification. 

 
Note that computations in R

D
 may reach potentially hazardous system states (e.g., an extremely high water 

volume), since R
D
 does not implement any spillway management policy that safely restricts the applications of 

the rewrite rules. Thus, the following companion assertion set A
D 
to be enforced is specified in order to apply our 

correction transformation: 
 

(a1) { [s,O] | V | T | AC } | (V < 50000000) 
(a2) { [s,O] | V | T | AC } | (V > 40000000) implies (O =/= c and O =/= o1)  
(a3) { [s,O] | V | T | AC } | (V < 10000000) implies (O == c) 

Roughly speaking, assertion a1 states that, in every system state, the basin water volume must be less than 
50 million m3 to avoid dam bursts and potentially disastrous floods. Assertion a2 specifies that, whenever the 
basin water volume is greater than 40 million m3, the spillway must be fully open (i.e., aperture width o2). 
Assertion a3 requires the complete closure of the spillway when the basin water volume is particularly low (10 
million m3).  

The first phase of our correction method generates the equational theory Eq(A
D
) that includes the following 

encodings of the assertions in A
D.
 

(e1) ceq [e1]: {[s’,O] | V | T | AC }' = fail if not(ori(V <’ 50000000’)) . 
(e2) ceq [e2]: {[s’,O] | V | T | AC }’ = fail  

Figure 1. Correction workflow 



                      if not(ori((V >’ 40000000’) implies (O =/=’ c’ and O =/=’ o1’))). 
(e3) ceq [e3]: { [s’,O] | V | T | AC }’ = fail  
                                   if not( ori((V <’ 10000000’) implies (O ==’ c’))) . 

 
These equations allow any renamed system state to be rewritten to fail whenever the corresponding 

assertion is violated. 
 

The second phase transforms each rewrite rule of R
D
 into their refined conditional counterpart as follows: 

 
crl [nocmd] : { SC | V | T | true } => { SC | V | T | false }  
                                            if ren({ SC | V | T | false }) =/= fail . 
crl [openC-1] : { [s,c] | V | T | true } => { [s,o1] | V | T | false }  
     if ren({ [s,o1] | V | T | false }) =/= fail . 
crl [open1-2] : { [s,o1] | V | T | true } => { [s,o2] | V | T | false }  
     if ren({ [s,o2] | V | T | false }) =/= fail . 
crl [close1-C] : { [s,o1]| V | T | true } => { [s,c] | V | T | false }  
      if ren({ [s,c] | V | T | false }) =/= fail . 
crl [close2-1] : { [s,o2]| V | T | true } => { [s,o1] | V | T | false }  
      if ren({ [s,o1] | V | T | false }) =/= fail . 
 
 
crl [volume] : { [s,O] | V | T | false } => { [s,O] | W | (T + deltaT) | true } 

if W := (V + inflow * deltaT) - (outflow(O) * deltaT)     
/\ ren{ [s,O] | W | (T + deltaT) | true }) =/= fail . 

 
By using the refined rules above, any state transition from a state s1 to state s2 occurs  only when s2 does 

not violate the assertions in A
D,  
thereby enforcing a safe behavior of  the corrected dam controller.  

 
 

 
Figure 2. Fixed dam controller R’
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Method implementation and validation 
 

The correction methodology has been implemented in the ATAME system that is available at http://safe-
tools.dsic.upv.es/atame. We conducted a thorough experimental evaluation using ATAME that demonstrates 
good performance (regarding code size, execution time, and program transformation time) for a number of 
benchmarks that are available and fully described within the ATAME web platform and in [1]. As shown in [1], 
transformation times are almost negligible, and moreover, running the corrected program R' in Maude is  
more than 50% faster on average than running the original program R in a monitored environment that 
implements runtime assertion checking.   

 
 

Maude programs can be either uploaded to ATAME as simple “.maude” files or written from scratch. Once 
the intended assertions have been also introduced inside a dedicated edit box, the correction procedure can be 
executed by simply clicking the “Fix Program” button, which delivers a coerced version of the program whose 
computations respect all the imposed assertions. Figure 2 shows a fragment of the dam controller R’D 

 
that has 

been automatically fixed by ATAME. 
 

 

Funding  

This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants RTI2018-
094403-B-C32 and by Generalitat Valenciana under grant PROMETEO/2019/098. 

 
Conflict of interest 

The authors declare that there are no conflicts of interest. 

 
Acknowledgements 
 
 We gratefully acknowledge the anonymous reviewers for kindly reviewing the research article to which this 
paper is companion. 
 
 
 
References 
 
[1]  M. Alpuente, D. Ballis, and J. Sapiña,  

Static Correction of Maude Programs with Assertions, 
      Journal of Systems and Software vol. 153, pages 64-85, July 2019 
 
[2]  M. Clavel, F. Duràn, S. Eker, S. Escobar, P. Lincoln, N. Martì-Oliet, J. Meseguer and C. Talcott,  

Maude Manual (Version 2.7.1),  
SRI International Computer Science Laboratory, 2016, available at: http://maude.cs.uiuc.edu/maude2-manual/ 

 
[3]  M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott, 

All About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting, 
Logic. Lecture Notes in Computer Science 4350, Springer 2007 

 
[4]  J. Meseguer,  

Conditional Rewriting Logic as a Unified Model of Concurrency, 
Theoretical Computer Science 96 (1) (1992) 73-155 

 
 
  



Meta-Data  
 

Title Imposing Assertions in Maude via Program Transformation  

Author María Alpuente  
 

Affiliation   María Alpuente 
Valencian Research Institute for Artificial Intelligence (VRAIN) 
Universitat Politècnica de València 
Camino de Vera s/n  
46020 Valencia, Spain 
 
 

Contact email alpuente@dsic.upv.es 
Co-authors  
 

Demis Ballis  
DMIF, University of Udine 
Via delle Scienze, 206  
33100 Udine, Italy 
demis.ballis@dimi.uniud.it 
 
Julia Sapiña 
Valencian Research Institute for Artificial Intelligence (VRAIN) 
Universitat Politècnica de València 
Camino de Vera s/n  
46020 Valencia, Spain 
jsapina@dsic.upv.es 
 

Keywords  Assertion enforcement 
Automated program transformation 
Program repair 
Equational rewriting 
Rewriting logic  
Maude 
 

SECTION Computer Science 
 
 
 


