
Method Article

Imposing Assertions in Maude via Program Transformation

María Alpuentea, Demis Ballisb, Julia Sapiñaa

a VRAIN, Universitat Politècnica de València
b DMIF, University of Udine

Contact email: alpuente@dsic.upv.es
Keywords: Assertion enforcement, Automated program transformation, Program repair, Equational rewriting, Rewriting logic,
Maude

ABSTRACT

Program transformation is widely used for producing correct mutations of a given program so as to satisfy the
user’s intent that can be expressed by means of some sort of specification (e.g. logical assertions, functional
specifications, reference implementations, summaries, examples). This paper describes an automated
correction methodology for Maude programs that is based on program transformation and can be used to
enforce a safety policy, given by a set A of system assertions, in a Maude program R that might disprove some
of the assertions. The outcome of the technique is a safe program refinement R' of R in which every computation
is a good run, i.e., it satisfies the assertions in A. Furthermore, the transformation ensures that no good run of
R is removed from R'.

Advantages of this correction methodology can be summarized as follows.

• A fully automatic program transformation featuring both program diagnosis and repair;
• A simple logical notation to declaratively express invariant properties and other safety constraints

through assertions;
• No dynamic information is required to infer program fixes: the methodology is static and does not

need to collect any error symptom at runtime.
• All executability requirements are preserved by the correction transformation.

© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/

Graphical Abstract

Specifications Table:

Subject Area

Computer Science

More specific subject area

Methods and tools to guarantee software quality and trustworthiness

Method name

Name and reference of
original method

Resource availability

Transformation method for enforcing system invariants in Maude programs

Static Correction Method for Maude Programs with Assertions

M. Alpuente, D. Ballis, and J. Sapiña, Static Correction of Maude Programs
with Assertions. Journal of Systems and Software vol. 153, pages 64-85,
July 2019

http://safe-tools.dsic.upv.es/atame/

Method details

Short introduction regarding the method applicability and motivation

This paper describes an automated correction methodology that can be applied to impose safety properties
on concurrent and nondeterministic software systems that are modelled as Maude programs. Nonetheless, the
core idea of our correction transformation can be transferred to virtually any rewriting-based programming
language, from simple term rewriting systems and rule-based languages such as CafeOBJ, OBJ, ASF+SDF,
and ELAN, to widespread functional languages such as Haskell and Erlang, provided that the transformation
preserves the executability conditions required by the language. Indeed, the proposed correction method
transforms program rules into guarded program rules whose conditions supersede the (external) safety
assertion checks and are simply evaluated by using the very same rewriting infrastructure of the language.
Therefore, the provided assertion checking mechanism can be embedded into any setting that supports rewriting
with an effort that depends on the complexity of the chosen formal framework.

In the following, we outline the correction procedure for repairing Maude programs with respect to a safety
policy that is expressed as a set of system assertions; a similar modus operandi can be followed to replicate
this method in different rewriting frameworks such as those mentioned above. The advantage of the technique
is that more refined versions of a program can be incrementally built without any programming effort by simply
adding new safety constraints into the set of assertions. This makes it possible to adapt existing Maude
programs to predefined safety policies and allows the inexperienced user to largely forget about Maude syntax
and semantics.

On the rewrite framework

Maude is a high-performance language and system that efficiently implements Rewriting Logic [4], which is
a logic of change that seamlessly unifies a wide variety of models of concurrency. A Maude program R is
essentially made up of two components, E and R, where

• E is a canonical (membership) equational theory that models system states as terms of an algebraic
data type, and

• R is a set of rewrite rules that define transitions between states and which is assumed to be coherent
w.r.t. the equations in E.

Canonicity of E and coherence between R and E are fundamental executability properties that guarantee
the soundness and completeness of Maude’s evaluation mechanism [3].

 Algebraic structures often involve axioms like associativity, commutativity, and/or identity (also known as
unity) of function symbols, which cannot be handled by ordinary term rewriting but instead are handled implicitly
by working with congruence classes of terms. More precisely, the membership equational theory E is
decomposed into a disjoint union E = D È Ax, where

• the set D consists of (conditional) membership axioms (i.e., axioms that assert the type of some terms)
and equations that are implicitly oriented from left to right as rewrite rules (and operationally used as
simplification rules), and

• Ax is a set of algebraic axioms that are implicitly expressed as function attributes and are mainly used
for Ax-matching.

 The system evolves by rewriting states using equational rewriting, i.e., rewriting with the rewrite rules in R
modulo the equations and axioms in E. For the sake of simplicity, we only consider topmost Maude programs,
that is, Maude programs in which rewrites can only happen at the state top level position. This implies that no
local state changes are allowed: in other words, each rewrite step completely replace a state s1 with a new term
representing the derived state s2. In [1], increasingly involved Maude program structures are considered (such
as topmost modulo Ax rewrite theories and Russian doll theories that support system states with recursively
nested structures).

 In our framework, system safety properties are specified by means of assertions, that is, logical statements
of the form S | j, where S is a term (the state template) and j is a quantifier-free, first-order logic formula (the
state invariant). An assertion S | j holds in a system state s iff, for every subterm of s that matches (modulo E)
the algebraic structure of the state template S with substitution σ, the constraints given by the instantiated
formula φσ are satisfied. In our scenario, the notion of satisfaction of a (closed) instance φσ of φ boils down to
reducing φσ to its truth value via equational rewriting. If an assertion does not hold in a system state s, we say
that there is an assertion violation in s.

Maude's formal tools are numerous and perform different analysis and verification tasks, either statically

(e.g., Maude's theorem prover and model checker) or dynamically (Maude's assertion checker); see [1] for
references. However, to the best of our knowledge, there is no previous methodology for automated safety
enforcement in Maude.

The proposed method

Our correction method is based on a two-phase program transformation technique that allows a Maude
program R to be refined into a program R' w.r.t. a set of assertions A as follows. Let us assume that the program
R consists of the equation set E and the rewrite rule set R.

1. The first phase translates the assertion set A into an executable equational definition Eq(A) that can
be used to detect assertion violations within system states. Roughly speaking, given a system state s,
a violation of some assertion in A is detected in s whenever a renamed apart version s’ of s can be
simplified into the special constant fail by using the equational theory E of R extended with Eq(A).

Specifically, each assertion (S | j) is encoded by a conditional equation in Eq(A) of the form

ceq S’ = fail if not(ori(j’)) .
such that

• S’ is a renamed apart version of the state template S where each operator f in S has been replaced
 by a new operator f’;1
• fail is a fresh new constant that does not occur in R;
• ori(t’) is a function that takes a renamed apart term t’ and restores its original version t, that is,
 ori(t’) = t.

Note that assertion checking is executed over renamed versions of the original program states, while
logic formulas are evaluated by using the original operators of R. Renaming is key to neatly separate
assertion checking from system computations and avoid interferences that might jeopardize
termination, confluence and/or coherence properties in the repaired program (for a detailed discussion
on renaming, see [1]).

2. The second phase transforms the original rewrite rules of R into guarded, conditional rewrite rules that

can only be fired if no system assertion is violated. Intuitively, this is achieved by transforming each
rewrite rule (l ® r if C) of R into a refined version r’: (l ® r if C Ù ren(r) =/= fail) of r, which contains
the extra constraint ren(r) =/= fail that holds when the renamed apart instances of the right-hand side
r of the rule r cannot be simplified to fail by using the extended equational theory EÈ Eq(A).

This way, we ensure that any state transition from state s1 to state s2 is enabled in the program R’ only
if s2 is a safe state, that is, every assertion of A holds in s2.

As an important advantage of the method, executability conditions of R and E are preserved by the correction
transformation. Furthermore, the methodology copes with infinite space states and does not require the
knowledge of any failing run. A rigorous and complete formalization of the method can be found in [1].

A typical correction transformation session

To show how our correction methodology works in practice, we consider a topmost Maude program R
D
 that

specifies a toy dam controller for monitoring and managing the water volume of a basin. The workflow of the
correction methodology is depicted in Figure 1. In the sequel, variable names are fully capitalized. We assume
that the dam model is provided with a spillway called s which has four possible aperture widths of increasing
discharge capacity c, o1, o2. A spillway configuration is formally specified by a term [s,O], where O belongs
to the set {c,o1,o2}. System states are defined by terms of the form

{ SC | V | T | AC }

where SC is a spillway configuration, V is a rational number that indicates the basin water volume (in m3), T is a
natural number that timestamps the current configuration, and AC (aperture command) is a Boolean flag that
enables changes of the spillway aperture widths only when its value is true.

To keep the exposition simple, we assume that the basin water inflow is constant, while the basin outflow
depends on the aperture width of the current spillway configuration. Basin inflow and outflow are measured in
m3/min and are specified by the following Maude equations

1 Note that, in the case of mixfix operators, we just rename one operator symbol. For instance, the binary, mixfix operator
< _ | _ > would be renamed < _ | _ >’.

eq inflow = 2000 .
eq outflow(c) = 0 .
eq outflow(o1) = 1200 .
eq outflow(o2) = 2200 .

Note that more realistic scenarios could be easily defined by specifying more sophisticated basin inflow and
outflow functions.

The dam controller dynamics is modeled by the following eight rewrite rules, which implement system state
transitions.

rl [nocmd] : { SC | V | T | true } => { SC | V | T | false } .
rl [openC-1] : { [s,c] | V | T | true } => { [s,o1] | V | T | false } .
rl [open1-2] : { [s,o1] | V | T | true } => { [s,o2] | V | T | false } .
rl [close1-C] : { [s,o1]| V | T | true } => { [s,c] | V | T | false } .
rl [close2-1] : { [s,o2]| V | T | true } => { [s,o1] | V | T | false } .
crl [volume] : { [s,O] | V | T | false } => { [s,O] | W | (T + deltaT) | true }

 if W := (V + inflow * deltaT) - (outflow(O) * deltaT) .

The openX-Y rewrite rules progressively increment the aperture width of the spillway s (e.g., the rule

open1-2 increases the aperture of the spillway s from level open1 to level open2). Dually, closeX-Y rewrite
rules progressively decrease the aperture width of a spillway. The rule nocmd specifies the empty command,
which basically states that no action is taken on the spillway configuration by the dam controller at time instant
T. The rule is fired only when the AC flag is enabled, and its application disables the flag to allow a new basin
water volume to be computed in the next time instant. These rules implement instantaneous spillway
modifications that do not change the time instant or the basin water volume.

The temporal evolution of the basin water volume is specified by the conditional rewrite rule volume that

computes the volume W at time T + deltaT, given the input volume V at time T. The parameter deltaT is
measured in minutes and can be set by the user. The volume computation changes the input volume V by
adding the water inflow and subtracting the corresponding water outflow over the deltaT interval.

The use of the apertureCommand flag in the rule definitions guarantees a fair interleaving between the

applications of the rule volume and the remaining rewrite rules. Specifically, this implies that a new basin water
volume is computed after each spillway aperture width modification.

Note that computations in R

D
 may reach potentially hazardous system states (e.g., an extremely high water

volume), since R
D
 does not implement any spillway management policy that safely restricts the applications of

the rewrite rules. Thus, the following companion assertion set A
D
to be enforced is specified in order to apply our

correction transformation:

(a1) { [s,O] | V | T | AC } | (V < 50000000)
(a2) { [s,O] | V | T | AC } | (V > 40000000) implies (O =/= c and O =/= o1)
(a3) { [s,O] | V | T | AC } | (V < 10000000) implies (O == c)

Roughly speaking, assertion a1 states that, in every system state, the basin water volume must be less than
50 million m3 to avoid dam bursts and potentially disastrous floods. Assertion a2 specifies that, whenever the
basin water volume is greater than 40 million m3, the spillway must be fully open (i.e., aperture width o2).
Assertion a3 requires the complete closure of the spillway when the basin water volume is particularly low (10
million m3).

The first phase of our correction method generates the equational theory Eq(A
D
) that includes the following

encodings of the assertions in A
D.

(e1) ceq [e1]: {[s’,O] | V | T | AC }' = fail if not(ori(V <’ 50000000’)) .
(e2) ceq [e2]: {[s’,O] | V | T | AC }’ = fail

Figure 1. Correction workflow

 if not(ori((V >’ 40000000’) implies (O =/=’ c’ and O =/=’ o1’))).
(e3) ceq [e3]: { [s’,O] | V | T | AC }’ = fail
 if not(ori((V <’ 10000000’) implies (O ==’ c’))) .

These equations allow any renamed system state to be rewritten to fail whenever the corresponding

assertion is violated.

The second phase transforms each rewrite rule of R
D
 into their refined conditional counterpart as follows:

crl [nocmd] : { SC | V | T | true } => { SC | V | T | false }
 if ren({ SC | V | T | false }) =/= fail .
crl [openC-1] : { [s,c] | V | T | true } => { [s,o1] | V | T | false }
 if ren({ [s,o1] | V | T | false }) =/= fail .
crl [open1-2] : { [s,o1] | V | T | true } => { [s,o2] | V | T | false }
 if ren({ [s,o2] | V | T | false }) =/= fail .
crl [close1-C] : { [s,o1]| V | T | true } => { [s,c] | V | T | false }
 if ren({ [s,c] | V | T | false }) =/= fail .
crl [close2-1] : { [s,o2]| V | T | true } => { [s,o1] | V | T | false }
 if ren({ [s,o1] | V | T | false }) =/= fail .

crl [volume] : { [s,O] | V | T | false } => { [s,O] | W | (T + deltaT) | true }

if W := (V + inflow * deltaT) - (outflow(O) * deltaT)
/\ ren{ [s,O] | W | (T + deltaT) | true }) =/= fail .

By using the refined rules above, any state transition from a state s1 to state s2 occurs only when s2 does

not violate the assertions in A
D,
thereby enforcing a safe behavior of the corrected dam controller.

Figure 2. Fixed dam controller R’

D

Method implementation and validation

The correction methodology has been implemented in the ATAME system that is available at http://safe-
tools.dsic.upv.es/atame. We conducted a thorough experimental evaluation using ATAME that demonstrates
good performance (regarding code size, execution time, and program transformation time) for a number of
benchmarks that are available and fully described within the ATAME web platform and in [1]. As shown in [1],
transformation times are almost negligible, and moreover, running the corrected program R' in Maude is
more than 50% faster on average than running the original program R in a monitored environment that
implements runtime assertion checking.

Maude programs can be either uploaded to ATAME as simple “.maude” files or written from scratch. Once
the intended assertions have been also introduced inside a dedicated edit box, the correction procedure can be
executed by simply clicking the “Fix Program” button, which delivers a coerced version of the program whose
computations respect all the imposed assertions. Figure 2 shows a fragment of the dam controller R’D

that has

been automatically fixed by ATAME.

Funding

This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants RTI2018-
094403-B-C32 and by Generalitat Valenciana under grant PROMETEO/2019/098.

Conflict of interest

The authors declare that there are no conflicts of interest.

Acknowledgements

 We gratefully acknowledge the anonymous reviewers for kindly reviewing the research article to which this
paper is companion.

References

[1] M. Alpuente, D. Ballis, and J. Sapiña,

Static Correction of Maude Programs with Assertions,
 Journal of Systems and Software vol. 153, pages 64-85, July 2019

[2] M. Clavel, F. Duràn, S. Eker, S. Escobar, P. Lincoln, N. Martì-Oliet, J. Meseguer and C. Talcott,

Maude Manual (Version 2.7.1),
SRI International Computer Science Laboratory, 2016, available at: http://maude.cs.uiuc.edu/maude2-manual/

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott,

All About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting,
Logic. Lecture Notes in Computer Science 4350, Springer 2007

[4] J. Meseguer,

Conditional Rewriting Logic as a Unified Model of Concurrency,
Theoretical Computer Science 96 (1) (1992) 73-155

Meta-Data

Title Imposing Assertions in Maude via Program Transformation

Author María Alpuente

Affiliation María Alpuente
Valencian Research Institute for Artificial Intelligence (VRAIN)
Universitat Politècnica de València
Camino de Vera s/n
46020 Valencia, Spain

Contact email alpuente@dsic.upv.es
Co-authors

Demis Ballis
DMIF, University of Udine
Via delle Scienze, 206
33100 Udine, Italy
demis.ballis@dimi.uniud.it

Julia Sapiña
Valencian Research Institute for Artificial Intelligence (VRAIN)
Universitat Politècnica de València
Camino de Vera s/n
46020 Valencia, Spain
jsapina@dsic.upv.es

Keywords Assertion enforcement
Automated program transformation
Program repair
Equational rewriting
Rewriting logic
Maude

SECTION Computer Science

